
4D-Ri63 883 THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR i/A
COST-EFFECTIVE MANUFACTURE OF (U) PURDUE UNIV

LAFAYETTE IN SCHOOL OF INDUSTRIAL ENGINEERING
UNCASIFED Y INETAL SEP 85 N88814-83-K-8385 F/G 13/8 N

mEEEEEmhohhhhE



&A2 12.2

iiiii 1.8

miCROCOPY RESOLUTION TEST CHART

SA jOF4AL BUREAU OF STANOARSi96
3

-A

L



THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR
COST-EFFECTIVE MANUFACTURE

OF HIGH PRECISION ENGINEERING PRODUCTS
0

0

(0
ONR Contract No. 83K0385

FINAL REPORT
VOL. 3

GEOMETRIC ADAPTIVE CONTROL FOR ACCURACY AND
STABILITY IN MACHINING CYLINDRICAL WORKPIECE

PREPARED BY
Yhu-Tin Lin and C. Richard Liu

SEPTEMBER 1985

dThis dome,= bas beau "Top

jo, pu lc release aId so - -

dist ibUtion is u ei -

Schools of
Industrial, Electrical and Mechanical Engineering

Purdue University
West Lafayette, Indiana 47907



None
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia, REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
I None None

go S CURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION 'AVAILABILITY OF REPORT

2b DECLASSIFICATION 0 DOWNGRADING SCHEDULE
None

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

Final Report Vol. 3

61. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

PURDUE UNIVERSITY (of applicable) Department of Defense
I_ Office of Naval Research

.6 ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
School of Industrial Engineering
West Lafayette, Indiana 47907 Arlington, VA 22217-5000

Ba. NAME OF FUNDING ISPONSORING Sb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)614A NO0014-83- K-O 385/12/I 2

Sc. ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO
ONR: 433 SRO-153

11. TITLE (Include Security Classification)

GEOMETRIC ADAPTIVE CONTROL FOR ACCURACY AND STABILITY IN MACHINING CYLINDRICAL WORKPIECE

12 PERSONAL AUTHOR(S)
Lin, Yhu-Tin and C. Richard Liu

13a. TYPE OF REPORT ~ 13b TIME COVERED 114 DATE OF REPORT (Year, Month, Day) SPAGE COUNT
FiFnal FROM -83  T08 -15- 8 5  September 1985 192

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse of necessary and identify by block number)
FIELD GROUP SUBGROUP Machining, machining errors, NC machines, roundness
13 1 accuracy, metrology, geometric adaptive control.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
A new geometric adaptive control (GAC) system has been developed for improving the

accuracy and stability in machining cylindrical workpiece. The system takes into consider-
ation error generation process, machine tool dynamics, and metrology. The new stochastic
model constructed in this thesis provides not only insight into the nature of machining
processes, but also a means for the systematic design of geometric adaptive controllers.

The adaptive control algorithms for the GAC system are derived by using the theory of
self-tuning control (STC). The algorithms are simple, robust, and suitable for micro-
processor implementation. Whitehouse's multiprobe measurement is modified for use in the
control system for the first time. Interesting properties of this measurement in control
are analyzed and predicted.

The results of simulation show that the GAC system can improve both the accuracy and
the stability considerably. Through the theoretical analysis it was possible to resolve

(continued on reverse)

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT 0 DTIC USERS None

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Dr. David Mizell, Scientific Officer 818-795-5971 x 56 433

DD FORM 1473. 8 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete None



19. (continued)

the control problems imposed by multiprobe measurement, and to achieve near optimum control
performance. A comparison with another GAC system which uses FCC technique is made to show
that the proposed GAC system does have better performance than other existing GAC systems
in precision machining.

7

W.

a

b ° r ,
,.- 

;I



a~~~ ~ ~ PI wtMM wrw_

THE SCIENCE OF AND ADVANCED TECHNOLOGY

FOR COST-EFFECTIVE MANUFACTURE

OF HIGH PRECISION ENGINEERING PRODUCTS

ONR Contract No. 83K0385
Final Report

Vol. 3

GEOMETRIC ADAPTIVE CONTROL

FOR ACCURACY AND STABILITY

IN MACHINING CYLINDRICAL WORKPIECE

Prepared by Accesion For

Yhu-Tln Lin and C. Richard Liu NTIS CR-A&I
DTIC TAB ]s
Unannourlced r

By........------------.... ........
September 1985 Dist Jb ;tio;

Availabiiity Codes

Dist Avail adlor
:special

Schools of
Industrial, Electrical and Mechanical Engineering

Purdue University
West Lafayette, Indiana 47907

,.



IIN

This report represents, with minor changes, the thesis submitted by

Mr. Yhu-Tin Lin to the Faculty of Purdue University for the award of the

Degree of Doctor of Philosophy.

Research described In this report has been supported by the Office of

Naval Research through Contract No. N83K0385 In the framework of the

ONR Precision Engineering projects.

C. R. Liu served as Major Professor for the thesis; he Is a member of

the faculty of the School of Industrial Engineering at Purdue University.

Work on the Precision Engineering project at Purdue University

greatly benefited from the use of the technical facilities of the Purdue

Computer Integrated Design, Manufacturing and Automation Center

4 (CIDMAC) and the advice of the CIDMAC member companies*.

Moshe M. Barash
Principal Investigator

C. Richard Liu
Principal Investigator

*Member companies of CIDMAC are:

Cincinnati Milacron; TRW; Ransburg Corporation; Cummins Engine Co.; Control

Data Corporation; ALCOA which is gratefully acknowledged.

Ik
I''m

% ,, .% . a '" m m, %. -. , % % 1,. k , , . %, %- -.-.. • .- 
-- I 

... .. ..



*iii r

TABLE OF CONTENTS

Page

LIST OF TABLES . . . ......... . . . . .. .. . . . .. v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT ............ . . . . . . ...... . ix

CHAPTER I - INTRODUCTION .... ................... 

1.1 Sources of Geometrical Errors . ... . . . .. . 3

1.2 Methods for Error Reduction .... . . . . .. . 4
1.3 GAC System and Related Problems ........ .. 6
1.4 The Objective of the Research .... . . .. . 8

CHAPTER 2 - METROLOGY AND DYNAMICS . .......... . . . 11

2.1 Metrology . . . . . . .1 . . . . . . . .
2.1.1 Workpiece Metrology . . . . . . . . . . . . . . 13
2.1.2 Machine Tool Metrology .. . . . . . . . .. 22

12.1.3 In-process Metrology . . . . . . . . . . . . . 26
2.2 Machine Tool Dynamics . . . . . . o o . . . . . . . . 28

2.2.1 Chatter and Cutting Dynamics . . . . . . . . . 30
2.2.2 Methods for Chatter Reduction . .. .. . .. 38

CHAPTER 3 - SELF-TUNING CONTROL THEORY . . . . . . o o . . . . 40

* 3.1 Self-tuning Control (STC) . . . . . . . . . . . . . . 41
3.2 Self-tuning Techniques . . . . . . . . . . . . . .. 42

3.2.1 Parameter Estimation o . . . . . . . . . . . . 43
3.2.2 Control Criteria . . . . . . . . . . . . . . . 45

3.3 Implementation Aspects . . . . . . . ........ 47
3.3.1 Identification Issues . . . . . . . . . . * 47

3.3.2 Control Issues . . . . . . . . . . . . . . .. 49
3.3.2 General Issues .... .. ..... .... . 50

& %



Page
CHAPTER 4- THEORETICAL DEVELOPMENT . . . . . . . . . . . . . 52

4.1 Model of the GAC System . . . . . . . . . ..... 54

4.2 STC Algorithm . . . . . . . . . .. .. . .... . 57
4.3 Stability, Convergence, and Robustness . . ..... 60
4.4 Multiprobe Measurement in GAC . e ... . . 64

4.4.1 Properties of Multiprobe Measurement . . . . . 68
4.4.2 STC With Multiprobe Measurement . . . . . . . . 73

CHAPTER 5 - SIMULATION OF THE GAC SYSTEM ........... 76

5.1 Simulation Model and Conditions . . . . . . . . . . . 77
5.2 Simulation With Ideal Measurement .......... . 83

5.2.1 Deterministic Systems . . . . . . . . . . .. 84
5.2.2 Stochastic Systems . .. . . . .. .. .. . 96

5.3 Simulation With Multiprobe Measurement . . . * . . . 104
5.3.1 Configuration of Probes for Simulation .... 104
5.3.2 Test of Detuning Factor ...... . . e . . 105
5.3.3 Test of Invisible Harmonics . . . . . . . . . . 107
5.3.4 Test of Stochastic System and Stability . . . . 113

5.4 Summary of Discussions ............... 116

CHAPTER 6 - A COMPARISON OF STC AND FCC . . . . . . . . . . . 120

6.1 Theoretical Investigation . . . . . . . . . . . . . . 121

6.2 Digital Simulation . . . . 0 . . 0 . . . . . . . .. 129

6.3 Analog Test * . * . . . . . . .. . . . . . . . .. . 139

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . 143

CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS. . . . . . . . . . 145

7.1 Conclusions . . . . . . . . . . . . . . . . . 145
7.2 Recommendations . . . . . .. .. .. . . . . . .. 147

* BIBLIOGRAPHY . . . . . . . . . . . . .. 148

APPENDICES

Appendix 1: Derivation of (4.1) . . . . . . . . . . . .. 158

Appendix 2: STC With Weighted Minimum Variance Criterion 163
Appendix 3: The FORTRAN Program for Digital Simulation * 165
Appendix 4: Project Staff 1983-1984 ................ 178

.....

, -..-



p ..

.°° V

LIST OF TABLES
.°

Table Page
5.1 Simulation Conditions . . . . . . . . . . . . . . 82

5.2 Simulation Results of Different Disturbance Levels
and System Delays ..... . . . . . . . . . . . 98

':4

%%

4.4

'I-

,.5



Vi

LIST OF FIGURES

Figure Page

1.1 Geometric Adaptive Control System ............. 7

2.1 Isodiametrical Shapes ............... . 14

2.2 Configurations of V-block for Measuring
Out-of-Roundness .. .. .. .. .. .. .. . .. 14

2.3 Centerless Grinding ................ 16

9., 2.4 Absolute Methods of Measurement for Workpiece . . . 16

2.5 Determination of Minimum Zone Center (MZC) . . ... 18

2.6 Determination of Least Squares Center (LSC). . ... 19

2.7 Limacon-shaped Polar Profile of Mis-centered Part . 21

2.8 Techniques of Machine Tool Metrology ......... . 24

2.9 Another Measurement Technique for Process of

Rotating Tool Type . . . . . . . . ........ 24

2.10 Typical Measurement of Spindle Radial Error Motion 25

2.11 Reversal Method for In-Process Measurement . . . . . 27

2.12 Multi-Step Method for In-Process Measurement . . .. 27

2.13 Machine Tool Dynamics . . . . ............. 29

2.14 Stability of a Milling Process ... .......... . 32

2.15 Machine Tool Dynamics in Control Block Diagram . . 34

2.16 A Theoretical Stability Chart of Fig. 2.15 . . .. 37

4.1 Structural Dynamics and Regenerative Effect
of Plunge Cutting . . . . . . . . . . . . . . . . . 55

4.2 Control Diagram of the GAC System . . . . . . . .. 55

4.3 Multiprobe Measurement . . . . ....... . .. 65

%

" , ... '.• . .. .-.',. . - % " . . ..- ; . , ' • * " . - •, . . .. - " - .-..---. . . .. -. •,, . - o .-



Vii

Figure Page

5.1 Plunge Cutting Process . . . . . . . . . . . . . . 78

5.2 Simulation Model .... ............. 80

5.3 GAC System With Periodic Disturbance Only
(Simulation I-1) o ... . .. ........... 85

5.4 The Effect of Forgetting Factor on the Convergence

of GAC System (Simulation 1-2) . . . . o . . o 88

5.5 GAC System With Periodic Disturbance From Stiffness

Variation of Chucked Workpiece (Simulation 1-3) . . 90

5.6 GAC System With Insufficient Model Order for Two
Periodic Disturbances (Simulation 1-4) ....... 92

5.7 GAC System With Sufficient Model Order for Two
Periodic Disturbances (Simulation 1-5) ....... 93

5.8 Perturbation Input for GAC System With Large Time
Delay (Simulation 1-6) . . . . . . 0 . . . . . . . . 95

5.9 GAC System With Both Periodic and Stochastic

Disturbances (Simulation 1-7) . . . . . . . 97

5.10 GAC System for Unstable Machining Process
(Simulation 1-12) .. . . . . . . . . . . . . . . 100

5.11 GAC System for More Unstable Machining Process
(Simulation 1-13) . . . . . . . . . . . . . . .. 101

- 5.12 GAC Using General STC for Unstable System
(Simulation 1-14) . . . . . . . . . . . . . . . . 103

5.13 GAC System With Multiprobe Measurement and Periodic
Disturbance (Simulation II-I) . . . . . . . . ... 106

5.14 The Effect of Detuning Factor in GAC System With
Multiprobe Measurement (Simulation 11-2) . . . . . . 108

5.15 GAC System for Once-Per-Revolution Harmonic

Invisible to Multiprobe Measurement
(Simulation 11-3) . . . . . . . . . .. 109

5.16 GAC System for Higher Harmonic Invisible to Multiprobe
Measurement (Simulation 11-4) . .......... 111

5.17 GAC System With Modified Configuration of Multiprobes
(Simulation 11-5) . . . . ............. 112

li



viii

Figure Page
5.18 GAC System With Multiprobe Measurement, Periodic

disturbance and Stochastic Disturbance

(Simulation 11-6) . . ................ 114

5.19 GAC System With Multiprobe Measurement for
Unstable Machining Process (Simulation 11-7) . . . 115

5.20 GAC System With Multiprobe Measurement for More

Unstable Machining Process (Simulation 11-8) . . 117

6.1 A SISO Control System . . . . . . . . . . . . . . . 122

6.2 STC for Machining Process With Deterministic

Disturbance Only . . . . . . . . ........ .. 132

6.3 STC for Machining Process With Both Deterministic

and Stochastic Disturbances ... ............ . 133

6.4 STC for Machining Process With Less Rigid Structure 134

6.5 FCC for Machining Process With Deterministic

Disturbance Only . . . . ............. .. 136

6.6 FCC for Machining Process With Both Deterministic

and Stochastic Disturbances . . ...... ... 137

6.7 FCC for Machining process With Less Rigid Structure 138

6.8 Experimental Setup for At alog Test ........ . 140

6.9 Electronic Circuit for Analog Test . . . . . ... 141

6.10 Output of Uncontrolled System .. ........... . 141

6.11 Output of STC System ... . . . . . . .... . 144

6.12 Output of FCC System ..... .............. . . 144

7.

"'- .'' "..',..- " -' . *i- .' . .. V .:. V :.."' "" " " ....- .
"

V- " " .. . "" - " 
-

. V-" " ""' - , '' , , '



( ix

ABSTRACT

/

A new geometric adaptive control (GAC) system has been developed

for Improving the accuracy and stability In machining cylindrical

workplece. The system takes Into consideration error generation process.

machine tool dynamics, and metrology. The new stochastic model

constructed In this thesis provides not only Insight Into the nature of

machining processes, but also a means for the systematic design of

geometric adaptive controllers.

The adaptive control algorithms for the GAC system are derived by

using the theory of self-tuning control (STC). The algorithms are simple,

robust, and suitable for microprocessor Implementation. Whitehouse's

multiprobe measurement Is modified for use In the control system for the

first time. Interesting properties of this measurement In control are

analyzed and predicted.

The results of simulation show that the GAC system can improve

both the accuracy and the stability considerably. Through the theoretical

analysis It was possible to resolve the control problems Imposed by

multiprobe measurement, and to achieve near optimum control

performance. A comparison with another GAC system which uses FCC

4 11 technique Is made to show that the proposed GAC system does have

better performance than other existing GAC systems In precision

machining.
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CHAPTER I

INTRODUCTION

The progress of machining accuracy has been accelerated by the

requirement of high precision parts in space exploration, electronics

miniaturization, and laser applications [70,93]. Not only do these

technologies need precision hardware, which are usually produced by

machining, to accomplish their extraordinary performance. In the

traditional industries the pursuit for better accuracy never stops.

Accurately machined parts can assure assembly efficiency in mass

production systems, reduce noise and vibration for improving the

quality of the product, and simplify product design [18].

It can be seen that cylindrical machined parts exist in most, if

not all, of the products. This is particularly true for those having

rotary motions. Dimensional accuracy, roundness, and finish are the

three most important aspects of the accuracy of cylindrical parts.

Dimensional accuracy refers to the bias error of the effective

diameter of the machined part from the specified diameter in the part

drawing. It determines the clearance or tightness in the assembly of K

a hole and a shaft. Dimensional accuracy is usually specified in the

design stage as tolerance to allow for the machining errors.

It has been shown by Moore [70] that roundness becomes

proportionally more critical as tolerances become tighter.

d -~~
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Roundness, or more precisely out-of-roundness, refers to the

deviation of the cross-section of a cylindrical workpiece from an

ideal circle. Depending on the types of applications, out-of-

roundness may result in various kinds of problems, such as leakage,

stress concentration, noise and vibration, and so on [34]. Most of

the time, out-of-roundness is regarded as the form error of low

frequency undulations on the part surface.

Unlike dimensional accuracy and roundness, finish is a

microscopic description of the part surface. The machined part

usually has many random and high frequency undulations on the surface

in addition to out-of-roundness. The qualitative interpretation of

these small undulations through human sensors, vision and touch, is

S- finish. Its effects on the performance of the product are also of

microscopic nature, such as friction, wear, erosion, and

reflectability.

According to the above descriptions, it is understandable that

the development in cylindrical machining has always been the most

rewarding in the history of machine tools. Lathes and drilling

machines are used for machining basic cylindrical surfaces. Other

machine tools such as boring, reaming, grinding, and hrning are

devised to trim excessive dimensions, to true round shapes, or to

polish surfaces. However, the higher the precision the process can

achieve, the higher the unpredictability it has, and the higher the

skill it needs [53]. Some automatic control systems for geometrical

accuracy are needed to overcome this barrier. For setting up

effective control systems, it would be helpful to identify the

, ' ~- 4 . .. . o4
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sources of and the processes generating geometrical inaccuracies or

errors on the machined part in advance.

1.1 Sources of Geometrical Errors

The sources of geometrical errors can be categorized as follows:

i. Structural inaccuracies and deformation - All members of the

machine tool are produced by using various production

processes. Consequently they are subject to manufacturing

errors. And because of the finite rigidity of the members,

structural deformation is induced whenever there are forces of

cutting, clamping, gravity, or heat expansion. These errors are

copied to the machined surfaces through tne machining processes.

ii. Vibrations - Vibration is the most annoying problem for the

machine tool builders and operators. It can be from anywhere,

unbalanced rotating parts, loose objects, or the floor of

machine base. The most detrimental vibration is from the

cutting process itself, called chatter. Vibration not only

reduces the accuracies of the machined part but also shortens

the lives of the tool and the machine.

iii. Machining processes - Besides the process related chatter, the

tool may leave unwanted marks on the machined surfaces as it

moves relative to the workpiece. Also the wear of the tool

affects finish and dimensional accuracy.

aiv. Microstructural changes - This involves the rupture or the

plastic deformation of the metallic grains of workpiece caused

%m



'>-T

by the cutting forces and the effect of friction on the tool-

workpiece interface.

Roughly speaking, the first two categories contribute to dimensional

error and out-of-roundness. And the last two categories have major

effects on surface finish. It is not wise to consider all the error

sources in developing an automatic control system for geometrical

accuracy. Some error sources are of minor importance, and can be

neglected. Some of them may never be good for automatic

compensation. Therefore, it is a good practice to learn about the

available techniques of error reduction. Then we can determine the

error sources which should be considered in the control system.

1.2 Methods for Error Reduction

According to Blaedel [151, the methods for error reduction can

be divided into:

(a) error avoidance

*eliminating the error sources

*altering the processes of error generation

, , (b) error compensation

*precalibrated

*active

The methods of error avoidance prevail in most of the machine tool

builders. They typically need painstaking trials and tests in order

to identify the true error sources or error generation processes.

Then, one can reduce errors by redesigning, modifying, or carefully

manufacturing the critical members of the machine tool. For cutting

process related errors, sometimes, it is necessary to limit cutting
* a%
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conditions at the expense of productivity. In general, error

avoidance applies to those error sources which are steady or which

can be eradicated once for all.

Error compensation, on the other hand, is suitable for dynamic

errors. It attempts to model the process of error generation from

the measured variables and then to predict the control inputs for

compensation. If the measurement is performed before or after the

cutting operations and then the errors are compensated for, it is

called precalibrated error compensation. The principle of

precalibrated compensation is based on the existence of systematic

errors for modeling. The off-line measurement simplifies the system

of precalibrated compensation. However, certain nonrepeatable or

dynamic errors, chatter, for instance, will never be sensed and

corrected. Production time is also wasted in measurement for

calibration.

Active error compensation, with in-process measurement,

rJ therefore, emerges as the most promising method for reducing

unpredictable errors [47,48,77,78]. One type of in-process

measurement is to measure the error motions of certain critical

members of the machine by attaching external masters to those

members. The other type is to measure the geometrical profile of the

N machined surface directly. Although sometimes the latter type of

active compensation has accessibility problems in setting up the

instruments, its performance is more effective than that of the

former type because of the direct assessment of geometrical errors.

,/ .. = .. .. . . . -.. , _ . :: ; . :. - ' . . .. . . , ., , , .. . -. . . : . .- ,, , . .. . .. .. -. . . ,., .
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The modeling of the process in active compensation, as shown in

Fig. 1.1, is quite complex. The unpredictable properties of the

system can be resolved by devising an adaptive model for the

compensator or controller according to in-process measurement,

compensation input, and appropriate control criteria. This has been

"-.,., termed "geometrical adaptive control" (GAC) [77,48,47].

1.3 GAC System and Related Problems

Basically, a GAC system should consist of in-process

measurement, on-line modeling or system identification, and real time

control. It is best for the applications in fine turning, honing,

and cylindrical grinding processes. Like its companions in

machining, adaptive control for optimization (ACO) and adaptive

control for constraint (ACC) [99], the development of GAC has been

relatively slow. Until now, only a handful of recent research papers

can be seen [50,84,55,68,69,87,102]. Most of these research work

still fail to fully resolve the following problems:

I

A. Problems in measurement - Apart from the problems of the

accessibility and reliability of sensors in harsh production

environments, a major concern in GAC is the separation

X" ,problem. That is, with the workpiece attached to the rotating

spindle, any in-process measurement of the surface geometry will

be contaminated by the spindle error motions, which are

difficult to be separated. The external masters used in [84,55]

can measure and compensate for the spindle error motion only.

- - . .. ....... . .. .- -. . . .-. - ." . - .



7

Disturbances Measured

MAMODELING

IDENEASUCEMENT

ADPIECONTROL U

Control

Criteria

Figure 1.1 Geometric Adaptive Control System
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3. Problems in system modeling - A thorough understanding of

machining processes has been elusive for the inconsistencies of

experimental findings caused by different cutting conditions,

tool geometries, and work materials. Traditional models are

deficient in handling the nonlinear, nonstationary, and

stochastic nature of machining processes. On the other hand,

the stochastic time series model used by Wu and his coworkers

[84,55,68,69] bears little physical meaning.

C. Problems in adaptive control - In the absence of appropriate

models for machining processes, most of the adaptive control

techniques of GAC are quite crude and inadequate in assuring the

stability of the GAC system. A systematic approach for the

design of adaptive controller is still lacking.

1.4 The Objective of the Research

The objective of this thesis is to propose a new GAC system

which can improve the precision of today's cylindrical machining

processes by at least an order of magnitude. To realize this

objective the above problems should be tackled more rigorously.

In Chapter 2, we investigate in detail the nature of the

problems in measurement and modeling. The basic principles and

-: characteristics of metrology are studied to help develop a suitable

technique of in-process measurement. For the purpose of modeling, we

review machine tool dynamics and try to find the most significant

nature of machining processes for developing a generic but physically

meaningful model of the GAC system.

.,4
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In Chapter 3, the general theory of self-tuning control is

introduced. It* is applicable to our GAC system for its ability to

control time varying and stochastic systems. Also, it satisfies the

requirement for a systematic design of adaptive controllers. In

general, self-tuning control consists of two parts, identification

k and control. There are many algorithms for parameter identification

and controller design. To develop an effective self-tuning

controller, some practical I sues have to be considered cautiously in

the construction of algorithms.

Mathematical models of the GAC system and the corresponding

adaptive control algorithms in discrete forms for digital computation

are presented in Chapter 4. The derivations are based on the

investigations in Chapters 2 and 3. The stability and convergence

properties of the control algorithms are analyzed. In addition,

special properties of multiprobe measurement, a method of in-process

measurement, in the GAC system are studied.

To evaluate the performance of the developed algorithms in

Chapter 4, simulation is carried out and the results are presented

and discussed in Chapter 5. The determination of some important

factors associated with the practical issues in self-tuning control

be- can be observed through the simulation results. The geometrical

PA accuracies and the increase in stability are the measures of the

performance of the GAC system. The simulation also accomplishes the

interesting studies of multiprobe measurement.

-..
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In Chapter 6 comparisons with Forecasting Compensatory Control

(FCC), which has been used for roundness control [84,551, are given

to show that the GAC system we developed here does have significant

improvement in performance, accuracy and stability over other

existing techniques. We make the comparison in theoretical analysis,

digital simulation, and analog test.

Chapter 7 concludes the work we have done and suggests future

work which will support the success of this new development.

..:
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CHAPTER 2

METROLOGY AND DYNAMICS

The development of GAC systems involves the consideration of j
metrology, machine tool dynamics, and control theory. In this

chapter the discussion will be focussed on metrology and dynamics.

The control theory will be presented in next chapter.

2.1 Metrology

"Metrology is the science of measurement, which determines a

dimension through the use of some type of calibrated device that

permits the magnitude of the dimension to be determined, directly and

indirectly, in scalar units" [311. The evolution of metrology in

manufacturing, since the early nineteenth century, has gone through

three stages: passive, active, and dynamic [80]. In the first stage,

passive metrology only served to reduce assembly work and to

guarantee interchangeability by checking the dimensional parameters

after manufacturing. In the next stage, active metrology was

introduced in order to achieve quality and interchangeability more

economically. The measurement is brought nearer to the manufacturing

process so that inaccuracies can be actively corrected by a certain

precalibrated compensation technique as mentioned in Chapter 1. In

the third stage, starting from 1960's, dynamic metrology emerged as

an essential part of the integrated manufacturing system for a

\•I
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continuous and in-process measurement. The measurement can be used

not only to correct the inaccuracies but also to optimize the

production system by the feedback or feedforward control action.

When correction of the geometrical inaccuracies is the major

function, the integrated system is the GAC system as defined in

Chapter 1; otherwise, it can be an ACC or ACO system.

In parallel with the above evolution, the instrument for

metrology has also developed from James Watt's micrometer to today's

highly sophisticated and precise laser interferometers [44].

Meanwhile, the advent of electronics and digital computers in

metrology have made the measurement more ccnsistent and efficient.

In addition, metrology also extends from simple distance measurement

to surface profile assessment. More metrological parameters are

needed to quantify the functions or performances of a manufactured

part. Standards, such as ANSI, BS, and ISO, have various documents

on metrology [42]. They are used to justify the measurement of the

metrological parameters.

Metrology in manufacturing, in general, can be categorized into

three types: workpiece metrology, machine tool metrology, and in-

process metrology. Although, for the GAC system, we are interested

in in-process metrology, measuring workpiece during machining

operation, the basic metrology principles and instrumentation of the

Nj other two types are presented here to help in identifying and solvinglI

problems in in-process metrology or measurement. Since we are

proposing a GAC system for cylindrical machining processes, most of

the discussion will be confined to cylindrical machined parts and the

associated machine tools.

|,-%",
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2.1.1 Workpiece Metrology

Workpiece metrology is the easiest to conduct, as the workpiece

can be placed in an ideal metrology room and measured carefully. For

a cylindrical workpiece, we are most interested in the measurement of

roundness. The methods of measuring roundness can be divided into

production type and absolute type [70]. The methods of production

type are:

(i) diametral

(ii) circumferential confining gage

(iii) rotating on centers

(iv) V-block

(v) three-point probe

These methods are relatively inexpensive, easy to operate, and rugged

in use. The disadvantage, however, is that the relative measurement

of roundness can only be used for passing or rejecting the part in

production line. The method of rotating on centers is even

susceptible to errors from both the measuring setup and the part

itself.

The major criticism of the diametral method and the V-block

method is their inability to detect, for example, the iso-diametrical

out-of-roundness as shown in Fig. 2.1. From the configurations in

Fig. 2.2, the out-of-roundness is determined by the magnification

factor [90].

F cos I o (2.1)

nn sin(/2)
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where a is the angle of V-block and n is the number of lobes

distributed on the part surface uniformly. Fn equal to zero means

that the out-of-roundness will not be detected ior an n-lobed part.

It can be shown, from (2.1), that the diametral gage, equivalent to a

1800 V-block, is unable to detect the out-of-roundness of the part

with odd-numbered lobes. And 60° V-block is not good for 5, 7-lobed

parts; 900 V-block not for 7, 9-lobed parts [70). More specifically,

the V-block of Fig. 2.2(a) can not detect the out-of-roundness of the

n -lobed part, where

n - 2k/O - 1 (2.2)

and k is any positive integer making n integer. The same property

can also be found in the multiprobe measurement of Chapter 4.

The configuration of V-block method is also analogous to that of

centerless grinding. As shown in Fig. 2.3, the edges of V-block

correspond to the grinding wheel and the control wheel, and the

indicator above the V-block corresponds to the workplate of the

grinding machine. Therefore, (2.1) or (2.2) explains why the ground

workpiece usually has odd-numbered lobes, and the out-of-roundness

diminishes as the workplate raises to a higher position.

The absolute method means that the roundness is assessed

directly from the surface profile measured in a roundness measuring

machine which has an extrinsic datum [34]. The measuring machine can

be either with overhead spindle or with rotating table as shown in

Fig. 2.4. The overhead spindle type, such as Moore Universal

,p1 '":
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Measuring Machine, has a stylus tracing around the cylindrical part

on a fixed flat table. It is good for heavy and short parts. The

rotating table type, such as Talyrond, on the other hand, is good for

light parts. The stylus assembly positioned on a fixed stand can be

adjusted freely. Specifications on stylus tip radius, stylus static

force, cycles per revolution, and other operational information can

be found in British Standard [17] and ANSI Standard [1]. I

The movement of the stylus is amplified and plotted on a

circular chart. The two most popular methods for evaluating the

out-of-roundness are: minimum zone center (MZC) and least squares

center (LSC) [17]. The MZC method, as shown in Fig. 2.5, needs

several graphical trials done manually to determine the two

concentric circles having the minimum radial difference. This radial

difference is defined as out-of-roundness. Recently, Murthy and

21) Abdin [72] devised the simplex search for finding the MZC in a more

systematic way.

The LSC method, as shown in Fig. 2.6, computes and finds the

center and the radius of the least squares circle by

2 E
a- N

2 E
b N (2.3)

Er
R

The out-of-roundness is the summation of the largest outward
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deviation of the polar profile from the LS circle and the largest

inward deviation. Since the LS circle can be determined uniquely,

this method is more suitable for computer controlled measuring

machines.

Special care should be taken in assessing out-of-roundness when

the cylindrical part is miscentered with respect to the axis of

rotation of the measuring machine. Fig. 2.7 shows that a perfect

round part will have a limacon-shaped polar graph provided that

eccentricity exists. The reason for this kind of distortion is the

suppressed radius used in plotting the polar graph [1101. The

suppressed radius is the preset distance between the stylus tip and

the axis of rotation. It should be as close to the mean diameter of

the part as possible so that the undulation of the part surface can

be distinguished by a high amplification factor.

Therefore, the above descriptions on assessing out-of-roundness

are just approximately true if the eccentricity ratio is less than

15% [95,1]. Whitehouse [110], Chetwynd [22], and McCool [63]

proposed a more accurate approach for numerical assessment. This

approach uses the following regression equation:

r - R + a cos e + b sn i + ei

i- 1,2,...,N (2.4)

By tt.! least squares method, the estimated values for R, a, and b are

the same as those in (2.3), and

I'.
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P(e) - R + a cos 8 + b sin 8i

represents the limacon graph of the LS circle of a mis-centered part.

The residual error ei is the quantity used for assessing roundness.

As defined in the British Standard, the LSC out-of-roundness is the

maximum peak-to-peak error of ei. Besides the improved accuracy, the

limit on maximum allowable eccentricity is less restrictive for this

technique. It simplifies the centering operation during measurement.

Also, (2.4) shows that the limacon consists of the constant and

the first harmonic of the Fourier series, and eiis the sum of all

higher harmonics. Hence, the removal of limacon from the polar graph

is equivalent to using a high-pass filter in signal processing. This

technique is frequently used in machine tool metrology.

2.1.2 Machine Tool Metrology

Basically machine tool metrology is the same as workpiece

metrology with the absolute method, except that the part to be sensed

is a perfect round master attached to the spindle of the machine

tool. Any measured movement can be attributed to the spindle error

motion, which may generate uneven surface profile on the machined

part [20,86]. Since the position of the sensor is where the tool

resides normally, the spindle error motion in the radial direction

relative to the sensor is particularly important in producing the

geometrical inaccuracies of dimensional error, out-of-roundness, and

roughness.

.4
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Unlike the absolute method of workpiece metrology, the setup for

machine tool metrology is determined by the machining processes. For

turning and most grinding operations, the setup for measurement

involves the replacement of the stationary cutting tool by a

noncontact sensor and the rotating workpiece by a spherical master,

as shown in Fig. 2.8(a). For the boring process with rotating tool,

Fig. 2.8(b) shows the setup with two perpendicular probes for

measuring the error motion at the angular position of the tool. The

setup in Fig. 2.9, an alternative for the setup in Fig. 2.8(b), is

more convenient for using single probe [49]. Other methods related

to the above two cases can be seen in the survey by Bryan and

Vanherck [20] and Murthy et al. [73].

Because of the nonrepetitive nature of the spindle error motion,

the measurement is normally made of readings for several revolutions

as shown in Fig. 2.10; it is defined as the total error motion polar

plot. The mean contour of the total error motion polar plot is

termed as the average error motion polar plot, and the difference

between the total error motion polar plot and the average error

motion polar plot is called the random error motion [101]. Using the 2

LSC method, the eccentricity can be located in the average error

motion polar plot.

Since the spindle runs normally at the operating speed during

measurement, the induced once-per-revolution unbalanced motion may

mix with the misalignment of the master. One of the approaches for

removing the misalignment effect from the measurement is to take a

second measurement at a fairly low spindle speed to get a new average

Z7-
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A) TOTAL ERROR MOTION
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Figure 2.10 Typical Measurement of Spindle Radial

Error Motion (101]
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motion, then to find the eccentricity purely caused by misalignment.

The digital technique we mentioned is good for this type of signal

processing.

2.1.3 In-process Metrology

For very precise measurement, we can no longer assume perfect

spindle in workpiece metrology or perfect master in machine tool

metrology. This situation corresponds to in-process metrology which

involves the measurements of both the workpiece geometry and the

spindle error motion. The revereal method [32,1], as shown in Fig.

2.11, separates the spindle error motion e(6) and the surface profile

s(6) by

e(6) = (v1(O) - v (0))/2

s(O) = (v () + v (6))/2
1 2

where vl () is the measurement taken at position 1 and v2(B) at

position 2. Whitehouse [111] devised the multi-step method as shown

in Fig. 2.12. In step i, the measurement is

v (6) - s(0 + ai) + e(6), i - 0,1,...,n.

'' Through appropriate linear combination

c(8) Eai v (6) = Eats(e + ai)

where
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Ea. =0

s() can be evaluated from the Fourier expansion of c(6). Although

the reversal method has more mechanical problems, the multi-step

method suffers harmonic distortion. Both of these methods assume

that the spindle error motion is repetitive, which is not generally

true in practice. Thus, Whitehouse [1111 proposed the multiprobe

method for non-repetitive spindle errors. This is particularly good

for our GAC system. It will be discussed in Chapter 4.

2.2 Machine Tool Dynamics

As discussed in Chapter 1, there are many error sources which

contribute to the inaccuracies of a machined part. Machine tool

dynamics plays a very important role in transforming the error

sources into the geometrical inaccuracies. Also, in developing a GAC

system for reducing the inaccuracies, the dynamic stability of the

machining system should not be sacrificed, however. Thus, it is

imperative to understand machine tool dynamics before the development

of the GAG system.

In general, machine tool dynamics deals with the interaction

between the cutting process and the machine tool structure as shown

in Fig. 2.13. The interest in the investigation of machine tool

dynamics can be attributed to the most obscure and delicate problem

in metal cutting - chatter [94]. Chatter, usually, is an unwanted

vibration phenomenon during the machining operation. It spoils the

finish and the dimensional accuracy of the workpiece, shortens the

lives of the tool and the machine, and generates uncomfortable noise

and vibration.

- " .......... ..... ... .... ..."" " - • " "". " " .'- -" "" ""
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There are two basic types of chatter: forced chatter and self-

excited chatter. Forced chatter typically results from periodic

.. disturbances, such as unbalanced rotating members, intermittent

cutting, gear backlash, and motions transmitted through the floor

[16]. This type of chatter, though important in practice, relates to

fairly simple structural dynamics and offers no insight into the

dynamics of the cutting process. Self-excited chatter, on the other

hand, occurs only when there are any machining operations. The

interaction of cutting dynamics and structural dynamics, under

certain conditions, may result in dynamic instability of the

machining process. Normally, the resulting vibration is much more

violent than that resulting from the former type. Thus, without any

confusion, the term "chatter" specifically refers to the self-excited

type in the following text.

2.2.1 Chatter and Cutting Dynamics

The theory of chatter in metal cutting was first explored by

Arnold [4). He proposed the falling characteristic of force-speed

relationship for explaining the chatter phenomenon. Although this

concept is still quite controversial [40,98], his work shed some

-.>' light on the research in cutting dynamics. Basically, the cutting

process can be visualized from the three boundaries in Fig. 2.13(b)

[30]. on the boundary of the shear plane, the length and the angle

of the plane determine major cutting forces exerted on the tool faces

(64]. On the boundary of the tool-chip interface, the tool tip, tool

holder, and workpiece may deflect owing to the cutting forces on the

tool rake face. The geometry and the tip position of the tool are

V.

....................................................................................................................................................................
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thus varied. Besides, the sliding motion of the chip over the tool

face is sometimes complicated by the built-up-edge and the wear on

the rake face, which change the tool geometry further.

Similar observations occur on the boundary of the tool-workpiece

interface. The flank wear resulting from the sliding motion changes

the effective clearance angle of the tool and affects the reacting

forces on the boundary. The tool and the workpiece, again, are

deflected by the reacting forces. Conceivably, the whole machining

-'-. process is quite nonlinear in nature; the associated factors are

interrelated. These explain the frequent inconsistencies in the

experimental findings among the researchers.

The mechanisms of chatter, generally, can be divided into the

velocity-dependent type, regenerative type, and mode-coupling type

[104]. Although they act simultaneously in practice, regenerative

chatter is recognized to dominate most of the unstable vibrations in

metal cutting [43,52,971. Furthermore, Tobias [98] elaborated the

theory of regenerative chatter and derived a stability chart which

matches very well with the test results as shown in Fig. 2.14. The

lobing characteristic of the stability chart, which is common to most

of the machining processes, can hardly be explained by other chatter

theories. These facts justify the regenerative process or effect as

being the key phenomenon of the machining process.

Regenerative effect is the chip-thickness variation effect

caused by the surface undulation, y(t-T), which is formed in a

previous cut [98]. Hence, as seen in Fig. 2.13(b), the uncut chip

"I. "
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thickness for a cylindrical machining process is given by

6 (t) - y(t) - Iy(t-T)

where T is the time required for each revolution of the spindle and

P, overlap factor, is introduced to account for the degree of overlap

in successive cuts. P is equal to one for plunge cutting, but zero

for thread cutting. In general,

The analytical prediction of P is very difficult; nevertheless, some

attempts have been made by Srinivasan and Nachtigal 191].

Machine tool dynamics can be conveniently represented by the

block diagram of Fig. 2.15, where regenerative effect is separated

from cutting dynamics for its particular significance. We

deliberately generalize the complexity of cutting dynamics by

expressing it as k G '. k represents the static cutting stiffness,

which can be measured in steady state cutting. The dynamic cutting

stiffness G can be as complex as the theoretical derivations of
c

Albrecht [2] and Wu [114]. However, linear dynamics as expressed by

G (, (s) - 1 + Ks

is adequate to account for the physics of small vibration and to

accommodate the important effect of penetration rate [98,89].

V.
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As for structural dynamics, k is the static structural

stiffness of the tool-workpiece-machine system. The dynamic

structural stiffness, G ', basically has the transfer functionm

G '(s) i __ _ __ _ __ _ _

m i s 2 + 22iWnS + W
m i ni

which is a multi-degree of freedom system with damping ratios Ci's

and natural frequencies w .'s. If there is any mode-coupling effect,

G ' can be expanded into a transfer matrix to correlate the vectors
m

of cutting forces and structural deflections.

A further simplification of the representation can be made by

letting

G = G 'G
m cm

The stability borderline in the stability chart can be constructed by

solving the characteristic equation of the system in Fig. 2.15

1 + k c (1 - ieS)G m(S) = 0, s = jw, j = J-i
m

Thus

i-iom s- CO (2.9- R(W) = - I J2  tcsW (2.5)
g.\w/ c 1 + i~

2 - 2ipcos WI

k
m JP sin W (.

1(w) c I + 12 2 cos w (

cZ 1. ..

i-.:-i .. .--. -.-.... .. . . .. .- -. --....- - .. ... ... - •..- .-. . .- -. -• - . .-. --....-.-.. -

q*." -.:.:.: ' - . - . -' , . . -. ' - . . : .. . . . - . 2 - i i" . . - , , .
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where

G (w) 9 R() + jg (W)

Th If G (jQw) and w are known in advance, the chatter frequency w can be•m Cmm
found, for each given w T, by solving

g(W) u sin W T

1 - V COS W T

Then, k /k can be obtained from either (2.5) or (2.6).c m

Fig. 2.16 is the stability chart for the special case when

2

G (s) n (2.7), .- ,.m 2 2
s + 2¢w S +

n n

The chart shows that the stability of machining is determined by the

stiffness ratio, kc /k, and the ratio of the cutting speed,

Q or 2w/T, to the chatter frequency, w " In this case the asymptotic

borderline for absolute stability is [65]

(k1 2
c m min 2 g(wljl- +2

(kclm~mn =- 2gR(wO)]min  2;+2;

The term (kc/k) represents the minimum ratio of static cutting
c m min

stiffness to static structural stiffness. If the actual stiffness

ratio is smaller than this limit, the system will be unconditionally

stable at any cutting speed. Thus, the term (kc /kmm can be useda m min
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as a measure of the stability of machining. For the above simple

system, with typical damping ratio of C - 0.05, the maximum degree of

stability is k /k - 0.105.

c m

2.2.2 Methods for Chatter Reduction

There are many ways of increasing the stability of machining or

chatter control [16,98]. Increasing the damping in the vibration

direction is the most obvious one. Increasing the structural

stiffness by preloading the spindle can also enhance the stability.

In the shop floor, changing the cutting conditions is is frequently

used for avoiding chatter. Small depth of cut or width of cut, which

reduces cutting stiffness, is beneficial in stabilizing the machining

process. It can be seen from Figs. 2.14 and 2.16 that the dynamic

stability, sometime, can be achieved by using high cutting speed

which exceeds a certain critical value. Weck et al. [103] even used

the lobing characteristic of the stability chart to avoid chatter

vibration by shifting the spindle speed to the stable region.

Most of the above methods usually restrict the productivity or

need redesign of the machine. To overcome these deficiencies, active

chatter control was introduced in the late 1960's. The system of

active chatter control normally has a feedback controller which is

designed according to the machine tool dynamics as shown in Fig.

2.15. The feedback system of Comstock et al. [291 measures the

relative displacement between the tool and the spindle, and controls

the infeed motion of the tool during plunge cutting. Nachtigal and

his coworkers [74,75,60] use force feedback to control the same

machining process.

-2~ -4 ._
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Later, adaptive active chatter control, using both force and

displacement feedbacks, was proposed to handle the problems of the

variation of machine tool dynamics during operation [76,671.

Basically, these methods use a deterministic model of machine tool

dynamics for stabilizing the machining operation. They may also

attenuate disturbances through the increase of the controller gain

(661. However, for geometric adaptive control, where accuracy is

more important than stability, the gain increase may not be adequate

for the unknown nature of random disturbances. Therefore, it is

essential to develop a stochastic model, based on the similar

reasoning of machine tool dynamics, to control the random

disturbances more effectively. Also, the control algorithms must be

more adaptive, versatile, and easy to implement for automated

machining systems.
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CHAPTER 3

SELF-TUNING CONTROL THEORY

Although we are able to recognize and model the fundamental

properties of machine tool dynamics as shown in Chapter 2, the

characteristic parameters of the system can never be assessed exactly

through off-line testings and analyses. The value of the parameters

may change with the type of working material, part geometry, tool

geometry, and cutting conditions. Also, the changes may occur during

the operation because of cutting force, wear, heat, and other

disturbances. Thus, in GAC, we need an adaptive control technique

which can assess the system characteristics on line and maximize the

performance of the machining process.

As shown in Fig. 1.1, the adaptive controller basically consists

of two important functions:

.4) *on-line identification of characteristic parameters

*real time control for optimizing the performance index.

An ideal or optimal. adaptive controller, also called dual controller,

is very difficult to achieve and implement due to the nonlinear

nature of the in.eraction between the identification function and the

"* control function [35,9] The interaction is nonlinear in the sense

that the controller has to consider the future uncertainties of the

parameters in giving the control inputs. And the uncertainties or

v . " 2-
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probability distributions of the parameters, called hyperstate, are

functions of the control inputs [112,5].

3.1 Self-tuning Control (STC)

Self-tuning control is a suboptimal adaptive control technique

which uses the certainty equivalence principle. The optimal

controller is designed by considering the estimated parameter values

as the true parameter values, that is, by ignoring any uncertainties

of the estimated parameters. This simplification makes the adaptive

control system linear and reduces the work of both analysis and

computation considerably.

The earliest STC is Kalman's [51] self-optimizing control, which

tried to adapt the controller automatically to the changes of the

process characteristics. Peterka [791 extended this idea to the

stochastic system with constant parameters. It is Astrom and

Wittenmark [101 who first analyzed the properties of a self-tuning

regulator, and showed that optimal control can still be obtained

m despite the approximation introduced by the certainty equivalence

principle. Since then, the interest in STC increased rapidly.

Further analysis of convergence and stability has provided much
.4

deeper insight into the STC theory. Various algorithms for both

identification and control have been proposed to make STC more

efficient and versatile. And many successful applications of STC have

been reported justifying its substitution for PID controllers.

Furthermore, the sampled data based algorithms of STC are

particularly suitable for today's low cost microprocessor control.

i-¢ 4

-j •



42

Most of these developments can be reviewed by studying the following

representative work: Astrom [6,7]; Astrom and Wittenmark [12]; Clarke

and Gawthrop [27,281; Goodwin and Sin [39]; Harris and Billings [41];

Isermann [45,46]; Unbehauen [1001; Wellstead [105].

3.2 Self-tuning Techniques

Assume that the system to be controlled can be described by an

ARMAX model [39]

• ~-1~y B-1 -1 .
A(z )ut-k + C(z )e t  (3.1)

where k, an integer, is the time delay of the control system and

-n-- 1 z-1 a-'
A(z )=I + az + . + an z

-n'.. 1) lZ I b
B(z b 0  + + ... + b-n b

nb

-n
C(z ) I + c z + ... + c z

n
c

are associated with the dynamics of the system. yt' ut and et denote

the system output, the control input, and the white noise disturbance

at the sampling time instant t, respectively.

The general form of a self-tuning controller can be expressed as

•" -1 * -1 -1
H(z )yt+k F(z )Yt + G(z )ut (3.2)

F. .m "

. . . . . . . . . . . . . . . . . . .

d,- " " " , " " - , , " " " ' " " ' ' ' " , " " " " " ' " " " " " " " ' - " " - - " " " " ' " " ' " " " " ' " " " " " " " " " ' ' ' "
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where y* is the desired output of the system. The polynomials F, G

and H are determined by the polynomials A, B and C in (3.1) and theIspecified control criteria. Depending on the methods for determining

the parameters of the controller, self-tuning controllers can be

divided into two categories, explicit and implicit algorithms. The

explicit or indirect algorithm needs to estimate the polynomials A, B

and C before assessing the parameters of the controller. In the

implicit or direct algorithm the model (3.1) can be reparameterized

into a certain form so that the parameters of the controller can be

estimated directly.

3.2.1 Parameter Estimation

Both the explicit and implicit algorithms need a recursive

parameter estimation scheme. The scheme can be one of the following

recursive estimation methods [46,33]:

recursive least squares (RLS)

recursive extended least squares (RELS)

recursive maximum likelihood (RML)

recursive instrumental variables (RIV)

stochastic approximation (STA)

The RML or recursive prediction error method (RPEM) is the most

general and complex algorithm [59). It has a unified form as shown

r below:

e(t) 0(t-I) + L(t)e(t) (3.3a)

L(t) = P(t)*(t)

doo4-',\V"

' ., ,<. -. ; ,+,..+ ++N ,. ..,- '+,.. , ,, . 4,..' ... -

,>,> ,-- .,,; ,,.+ ,, ' ¢ . ., ,. . .. . . . .- . : . . . . 4 , .. . 44.... .. , . . . . .. •
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I + 4) (t)P(t-1)4'(t) (.b

T
P(t) -[I - L(t) S (t)]P(t-1) a c(t) (3.3c)

T

(t)t~

a b

(t)... . . .. . . [-4-) ..- ~ - a 4,~ -) . ~ -- ~)

T (t) ..... 4........4..



, -.- n

(t-1)z - c) i(t

L Jn[(t

u(t) (3.4e)

-(t)J

where matrix I is a unit matrix and a(t) is the forgetting factor for

discounting the old data. The a posteriori prediction error c(t) in

(3.4b and c) can improve the convergence rate of the estimation

algorithm. Most of the time, however, it is approximated by e(t) for

simplicity. Further simplification can still be made. If *(t) is

approximated by *(t), the algorithm reduces to RELS. If n is equal
c

to zero, i.e., C(z- ) = 1, the algorithm reduces to RLS. RIV and STA

can be obtained by modifying or simplifying RLS; however, they are
seldom used in STC.

3.2.2 Control Criteria

In general, there are two types of control criteria, classical

and optimal [109]. From (3.1) and (3.2), the closed loop system is

of the form

(AG+BF)yk = BHyt+k + CGet+k (3.5)

With the classical type , the parameters of the controller, 7 and C,

are determined such that

A+ BF= CT (3.6)

S. ... .......... .. . .. . ........ .
%................................................-
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where A, B, and C are the estimated polynomials of A, B, and C. T is

the prespecified characteristic polynomial of the closed loop system.

For a regulator system, y - 0, T is chosen to have the properties of

• ., good noise rejection, a pole placement control [106,107]. For a

servo system, et M 0, T and H are designed to assure good tracking

capability. It belongs to the pole-zero placement control [11). The

extended STC of Wellstead and Sanoff's [108] chooses T and H for both

output tracking and noise rejection.

With the optimal type, the controller of (3.2) is taken to

minimize the cost function

'p. I= E[ (t+k)lt]

"(t+k) PYt+k + Qut - Ryt+k (3.7)

where P, Q and R are polynomials in operator z Consequently,

F, G and R can be determined from

C-E + z P

R = CR (3.8)

The alternative form of (3.5) is thus

BR * EB + QC
t PB + QA t + PB + QA t

.WV.

.. ,

. . . .. " . . . ' : , " . . ' ' .. : ' ' , , -.*' ..-, , . - ' ," ' ' ' ' .
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This is called generalized minimum variance control [23,25,26,381.
,

When P 1 1, yt - 0, and Q 0, the controller reduces to the famous

" .self-tuning regulator, a minimum variance controller [10]. Normally,

the cost function is specified with

P - R= 1, Q X > 0

for weighted minimum variance control [39].

The cost function of the optimal type can be extended to state

space variables for more sophisticated control [561; however, it is

beyond our scope of interest. The generalized STC proposed by

Allidina et al. [3] is a unification for the classical type and the

optimal type.

3.3 Implementation Aspects

In the practical implementation of STC there are several factors

which should be considered. They can be classified into

identification, control, and general issues.

3.3.1 Identification Issues

In identification or parameter estimation, we consider the

following factors:

i. Orders of system, n b and n They should be known a
a' ibc

priori. Normally, by knowing the upper bound, we can let

n = n = i = n. For implicit self-tuning algorithms, the.- a b c

information on time delay k is also needed. These integers

determine the total number of parameters to be estimated.

... ... 22
. . . . ".. . ..
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4! ii. Bias of estimation: Explicit algorithms require identification

schemes with less bias error in estimated parameters, such as

RML and RELS. These schemes, however, are complex

computationally and are susceptible to numerical instabilities.

Implicit algorithms, on the other hand, may use the simple

scheme as RLS and still have satisfactory control performance.

iii. Computation accuracy and speed: In microprocessor based control

systems the accuracy of data words is much more limited than

that in general purpose computers. The accumulated

computational errors may cause numerical difficulties. To

overcome this problem, the square roots method [92] and the UD

method [14,96] of RLS can be used to convert the computation

from single precision to double precision without slowing down

the computational speed. If the computational speed is

critical, a fast algorithm is recommended [71,57].

iv. Forgetting factors: A forgetting factor is very important in

STC. It not only determines the tracking speed of

identification for systems with time varying parameters, but

also may affect the convergence of the STC output. Normally, it

is in the range of .95 to 1.0. A low forgetting factor is good

for initial coarse tunings, fast varying parameters, and abrupt

changes in the desired output. However, it may destabilize the

control system if the value is too low, and may cause estimator

wind-up in servo control [5,12]. A time varying forgetting

factor [361 can be used to avoid those problems.

.4,!

. . . . . . . . . . . . . . . . . . . .. . . . . . . . .- ..... . . . . . .
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v. Initial data: This is not a crucial issue in STC. The general

rule is to make an initial guess of the parameters as close to

tle true values as possible. If the confidence of the guess is

low, the determinant of the covariance matrix should be large.

vi. Identifiability: Astrom and Wittenmark [10] showed that in an

implicit self-tuning regulator it is possible to have the

problem of identifiability in estimation. To avoid any

numerical difficulties, the simplest way is to give a certain

parameter a constant value.

3.3.2 Control Issues

The selection of control criterion depends on the following

factors:
-N

i. Performance specifications: This includes steady state error,

noise rejection, convergence, stability, and robustness. These

factors usually conflict with each other. Therefore, the

selected criterion must be a compromise of these factors. At

this moment we are unable to evaluate or justify any control

criteria for the lack of theoretical analysis. Some general

guidelines can still be found [12].

ii. Nonminimum phase problem: The nonminimum phase problem refers

particularly to some of the zeros of B in (3.1) falling outside

the unit circle Minimum variance control is very likely to be

unstable for this kind of systems. Pole placement or weighted

minimum variance control can overcome this problem [24].

'.,

i,--,,., ",,, .,, ,,( . . . * .. . . - . . . - .. . . . , . . ..,. . .- ,• . - ,, .. .. . j ' • ,- -. , .
'4 4, , . L ", -' "* "" 4 ... . -'., ' ,r ' . . " "" "" / '. "-. "-" ° . " " -" -' ' '. -' ' . 4'
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iii. Constraints on control input: Another deficiency of minimum

variance control is the large amplitude or energy of control

inputs frequently required during control. The control hardware

or actuator can be easily overloaded or saturated. Like the

nonminimum phase problem, pole placement and weighted minimum

variance control are possible solutions. Or, the constraints

can be incorporated into the cost function of optimal control

[62,611.

iv. Deterministic disturbances: In this text, deterministic

disturbances refer to the slowly varying disturbances and the

periodic disturbances with unknown frequencies and amplitudes.

This type of disturbances is important in practical control

systems; however, they are rarely discussed previously in STC.

The analysis and simulation of Goodwin and Sin [391 reveal that

the deterministic disturbances can be well compensated for by

STC.

3.3.3 General Issues

i. Simplicity in implementation: STC should always be designed as

simple as possible for practical applications. The self-tuning

algorithms with weighted minimum variance criterion and RLS

estimation usually give more satisfactory results than other

sophisticated algorithms. Also, implicit algorithms are simpler

and more robust than explicit ones in general [12].

ii. Sampling rate: Sampling rate, in general, should be high enough

to cover the desired bandwidth of the closed loop system. Its

% k

:,---: -. ',. ,:' .':,:..' .,.... ) ,.. .:, . -. : :. ., . i.. ', .. , ,,' " ' " . . ..""" " . . ".. .- " ""_ - "." ""
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upper bound is limited by some considerations. It should not

exceed the response speed of the actuator. It should be low

enough so that the computer can accomplish all the digital

signal processing, and the variation of system delay is

insignificant compared to the sampling time interval. Further

considerations can be seen in [121.

.'.
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CHAPTER 4

THEORETICAL DEVELOPMENT

As mentioned in Chapter 2, the geometrical inaccuracies of the

machined part result from the relative error motion between the tool

tip and the part surface during machining operations. The error

motion in radial direction is particularly important in determining

the geometrical errors. There are numerous sources which contribute

to such kind of error motion. Three major types of error sources

considered in this text are: stochastic, deterministic, and
i1:*

regenerative types.

The stochastic type is mainly induced by the play in the

" imperfect spindle bearings. Fig. 2.10 is a typical polar plot of

spindle error motion measured from the idling spindle. The

randomness of the error motion suggests statistical models, such as

autoregressive model [83] and moving average model, for describing

this error motion mathematically. In real cutting, this error motion

is complicated further by the chip breakage, nonstationary built-up-

edge, hard grains in work material, floor noises, and change of the

bearing play due to cutting forces and thermal drifts.

The deterministic type can be further divided into linear errors

and periodic errors. Linear errors refer to those caused by steady

or slowly varying disturbances, such as the structural deflection

0% - . . ". -. .& ., :. ... . .1-......
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induced by the mean cutting forces, tool wear, and thermal expansion.

Periodic errors mostly come from the unbalanced rotating parts, such

as the spindle, grinding wheel, and gear train. The resulting error

motion is characterized by the periodic movement with frequencies

having integer multiples of the angular frequency of the spindle.

The fundamental or lowest frequency component of error motion results

in the eccentricity of the machined part, while the higher harmonics

produce lobe-shape errors on the part surface. Periodic errors may

also result from directional stiffness variation caused by the

chuckhead [81].

The regenerative type is the regenerative effect discussed in

Chapter 2. It relates to the interaction between the cutting tor-e

and the machine tool structure. The frequency of this type of error

motion is close to the natural frequency of the tool-workpiece

structure. It is an unstable phenomenon during machining operations.

Whether this unacceptable error motion will occur or not is

determined by the stiffness and the damping of the machining system.

Most of the above error sources are dynamic. They are difficult

to identify because the error sources are interrelated. Moreover,

these error sources differ with part designs and machining

conditions. Therefore, they can be best compensated for by a GAC

system. The GAC system proposed in the next section assumes that

Y*'- direct measurement of the part geometry is used. Thus, the effect of

the above major error sources, except the thermal effect, on

geometrical accuracy can be detected and corrected by the controller.

The thermal effect is the dimensional expansion of the workpiece due

.' . . . ,'. . . ' .- - . ' . ' . . . ' ." • . ' . , . . ....I . . -.*. . - .-. . . . . . . ' - " . - - - . - .- . ' .,. .-3," ' & "': ..., ",-',.",- ,,'..'.,', ." .-' .-. -" ." -. '-' , -" " '.• .' '.'" -.-: -'.-',-,, ...' .'-. •. '-." ,', .'. :'-, ., -':,']'-,'-.',["
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to the cutting heat. The GAC system tends to generate the

geometrical accuracies at the elevated workpiece temperature during

machining. Thus, a certain temperature measurement and calibration

is needed for the true dimensional accuracy. In this text, however,

this effect is assumed to be negligible for simplicity.

4.1 Model of the GAG System

The physical model of a cylindrical machining process, plunge

cutting in particular, is shown in Fig. 4.1. The tool cuts into the

rotating workpiece, which is clamped to the spindle. The forces

generated during the cutting process excite the tool-workpiece

structure, which is basically a spring-mass-damper system.

Meanwhile, the induced stru(tural r regenerative type error motion

together with the other two tvpes of error motions determine the

actual tool path on the workplece. The instantaneous part surface

and the depth-of-cut are thus formed.

Based on the above investigation, a control diagram of the GAC
',4

system for plunge cutting is constructed as shown in Fig. 4.2. The

profile of the part surface at the tool tip is denoted by Yt. which

is the reduction of radius measured from a base circle as shown in

Fig. 4.1. Due to the regenerative effect in plunge cutting, the

instantaneous depth-of-cut is Y -Y , where p is the time interval
t t-p 4.

for the spindle to rotate in one revolution. The cutting process CP

is related to the depth-of-cut and the cutting force. Through the

structural dynamics, MT, a spring-mass-damper system, the error

motion X is induced. Thus, surface profile Y is the summation oft t
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Figure 4.1 Structural Dynamics and Regenerative Effect
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structural error motion -X , deterministic error motion Z
t t

stochastic error motion W , specified infeed of the tool Y (t), and
t S

* the control action u from the adaptive controller. The controller
t-k

G constantly measures the geometrical error y , defined by Y -Y (t),
t t s

identifies the system model, and gives appropriate control action to

reduce yt.

From Appendix 1, a linear model of the GAC system is derived an('

expressed by a stochastic difference equation as follows:

A(z )(y -y + 6)
t t-p t

:: -1 -1
= B(z )(ut k - Yt-p + 6 ) + G(z )t (4.1)

with

-1 -1 -n .

A(z + a z + + a z
I n

-1 -1 -n

B(z b + b z - ... + b z (4.2)
0 1 n

-1 -1 -n-.
C(z )=1 + cZ + ... + c z

-1 -1
where z is the backward shift operator, that is, z Yt Yt-l" The

inclusion of y in (4.1) explains the regenerative effect in plunge
%I Yt-p

cutting process. 6 , equal to Y (t) - Y (t-p), is the d pth-of-cut
t s s

corresponding to the specified infeed. The coefficients of A(z )

. and B(z ) are parameters associated with the characteristic

properties of CP and MT. They are not known in general. C(z )Ct

,.y: ;it

' -:: - ' " " . " " . :- . :: -- ::
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characterizes the stochastic error source in machining, where
t

2

represents a white noise process with zero mean and variance o . The

deterministic error source is embedded in (4.1) by the common zeros

of A, B, and C on the unit circle. In the following control

algorithms the order of the model, n, and time delay, k, are assumed

to be known. The delay, k, which accounts for the computation or

measurement delay, is far smaller than the regenerative delay p in

practice. The minimum value of k in digital control system is equal

to one.

4.2 STC Algorithm

By solving the Diophantine equation

C(z- ) = A(z -)E(z - ) + z-k F(z- ) (4.3)

where

-l -1 -k+l
E(z -1 )=i1 + ez + ... +e kz

1~-1 I eIz k-1I

{' "-i -I -n+ I

F(z ) f 0 + fIz + "'" + f n- z

Equation (4.1) can be written as

C( z )yt F(z )(Y - Yt-p-k + 6r-k +

G(z-)(uk - Yt-p + 6t) +

C(z-)(y - 6 ) + C(z- )E(z- )t (4.4)
t-p t t
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where

-1 -I
G(z.) B(z )E(z )

Thus,

F G
y -(y Y + )+(u y + +
t+k C t t-p t C t t-p+k t+k

(Yt-p+k t+k t+k

-". + E (4.5)! -" = t+k I t Et+k

-l

where the operator z is omitted for simplifying the representation.

y is the conditional expectation of y based on the
t+klt t+k

observations y, yt-I ... u , u ,..., and the parameters of A, B,

and C. Thus, for the minimum variance control criterion

Min Ely 2 :, . I A x;, t3tIon tunction (4.6)

it gives the following control law

V = u (4.7)

or

Cy F(yt  + 6 ) + G(u - y + 6 ) +
t+klt t t-p t t t-p+k t+k

C(y -6 0= (4.8)
t-p+k t+k~with variance

mV 9.-
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° :::: -2 2 2
Var [y' Iy [1 + e1 + ... + e ]O (4.9)

t Ik-I

In self-tuning control, since all the parameters are unknown, (4.8)

should be written as

t+kt + 1t+k-ljt- + nt+k-nlt-n

F' " (t -p t, -P + 6 ) + G(u t -p + t6 +
+6)+C u Yt-p+k

C(y -6 )

t-p+k t+k

=0 (4.10)

where all the estimated quantities are represented by placing the

symbol, ", on the top of the notations. Therefore, based on the

certainty equivalence principle, the control law corresponding to

(4.7) is to find u such that
t

9tkI  (y+68) + G(u -y + )

t+kt t t-p t t - t-p+k t+k

+ C(Yt-p+k - t+k

=0 (4.11)

(4.11) is derived from (4.10) by dropping the terms, tk- irlp.-.tk-i t-i )  '

2,..., n. Consequently, the model for estimating the parameters, F,

G, and C, is

S ..- . S

% °- .,"' .' , :" ,'" €, ' "" : .. . . '.. . '. '..,.:' ,V '': ,.:,% .,' .'..'''.. -'.-- - ," . . ' " ." v . "-"V .A .
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-(y - y - 6 ) + (u - y + 6)
-t t t-p+k -r k t-k t-p t

C(y - 6 ) + c (4.12)
t-p t t

where Ct corresponds to E& . If the system is optimally controlled,
t t

the control output y should satisfy (4.11).

The STC algorithm, represented by (4.11) and (4.12), belongs to

the implicit type. All the parameters in (4.12) can be updated by

the recursive least squares (RLS) scheme as shown in Appendix 2. The

recursive scheme can be further subjected to UD factorization for

improving the accuracy of computation [27,141. A forgetting factor

is used for tracking the specified input and the time-varying

parameters. Also, it is helpful to enhance the convergence rate of

the output at the outset of control.

4.3 Stability, Convergence, and Robustness

In optimal control, it can be shown that the control law (4.7)

gives a closed loop system satisfying

Cyt iCE t

CBu C(B A)(y - 6 ) - CF (4.13)
t t-p+k t+k t

The characteristics of the closed loop system, thus, depend on the

polynomials, B and C. That is, for a stable minimum variance

control, the zeros of B(z ) and C(z - ) must be within the unit

circle. The zeros of A, however, plays no important role in the

, %::.
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minimum variance control system. Therefore, even though the open

loop system is unstabJe, this closed loop system may remain stable

and optimally controlled. Conceivably, the self-tuning control

system will inherit the properties of the optimal control system.

This can be seen from the following stability and convergence

analysis conducted by Goodwin and Sin [39,88].

The existence of C in (4.12) is due to the specified infeed and

*the regenerative effect. Hence, it is a servo control problem. By

introducing the following substitutions

y (t) - Y (t)

y(t) = yt + y (t)•*
u(t-k) - utk + y (t)

A' - A + (B - A)z-
p

W(t) - C(t)

the model, (4.1), can be converted into

4-' A'y(t) - Bu(t-k) + Cw(t)

and the control law, (4.10), into
4t)T^

"(t" 8(t) - y (t+k)

% W.

4' .. "
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Vq.
where *(t) and 0(t) are defined in [39]. The term w(t) is assumed to

be a white noise process, which satisfies the following conditions:

(i) E[w(t)It-I 0

(i2) E[2 2(tlt-1] a 2

(iii) lir Sup 1 2 <
N ZW(t)<N- t=.

Also, the following assumptions are made about the system:

1. k is known.

2. The upper bound for model order is known.

3. B(z I) and C(z- I) have all zeros inside the unit circle.

I I4. T- - is strictly passive.
C(z) 2

By using a modified RLS [88], the self-tuning controller can be shown

to ensure with probability one that

..) ;"lira Sup Z N~ ) a (.4

N

lim Sup _ ZY(t)2 < (4.14)

1 )

N
:'i lira Sup 1 E u(t) (4.15

N- t-1
S-X,

N k-I
1 E(yt)- * 2 2 2lim Sup Z E[(y(t) -y (t)) 2t-] a 0 ei (4.16)

N+wo t-1 iWO*V.,,.

-'

.# . . . .
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Properties (4.14) and (4.15) yield the stability of the closed

loop system. The energy of both the system output and the control

input are bounded. Condition (4.16) stands for the output

convergence. That is, the desired output y (t) is asymptotically and

optimally tracked. The passivity or positive real assumption on

- ' a stronger assumption than C having asymptotically stable zero

[581, is important to the output convergence.

From Appendix 1, A-, B, and C may have common zeros on the unit

circle because of the deterministic disturbance. When the sampling

rate is sufficiently high B may have unstable zeros due to the excess

number of poles [8]. As for the former case, the common zeros

characterize the uncontrollable part of the system. In cptimal

control, Goodwin and Sin [39] showed that if C is split into

C-C +C
s r

where C has only asymptotically stable zeros and C is the remainder
s r

which can be as small as desired by the choice of C , the use of C
s s

instead of C in the Diophantine equation (4.3) will result in a

suboptimal but stable control. By the same token, in self-tuning

control, if the zeros of is kept within the unit circle by

projection method [391, the closed loop system will be nearly optimal

and stable.

-p.

"., . . . . . . ... .... ..... .
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For the later case, u in (4.13) will be unbounded when B has
t

unstable zeros. If lowering the sampling rate is not permissible,

the weighted minimum variance control as shown in Appendix 2 can be

used to get a suboptimal but stable control.

The above analysis is based on the assumption that the model

order n is sufficiently large to cover all the natural frequencies of

the system. In practice, a lower order model, however, is desirable

to simplify the algorithm and minimize the computation time. This

prompts the robustness issue of self-tuning control. Again, the

weighted minimum variance control can be used for ensuring the

robustness of the low order controller [121. Furthermore, by

properly varying the weighting factor on-line, the control input can

be assured to fall within the constraints.

4.4 Multiprobe Measurement in GAC

To separate the spindle error motion from the measurement of the

surface profile, Whitehouse [1111 devised the multiprobe method,

which uses three probes of different sensitivities without requiring

any masters. The probes are spaced around the workpiece as shown in

Fig. 4.3. The centerlines of these probes intersect at a fixed point

0. Due to the spindle error motion, the axis of rotation 0' moves

around the fixed center randomly. The amplitude of this movement, e,

is assumed to be far less than the nominal radius of the part,

normally below 103R [110].

The geometric error y (t) and the sensor measurement v (t) at
e c i-.--

. ~each probe location are defined by ""I

4.-

p.

*--S.



65

Probe3

r -*Probe I

Figure 4.3 Kultiprobe Measurement
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y.) R -r (t)

v (t) = R - d(t), i 1, 2, 3. (4.17)

where r (t) and d (t) are illustrated in Fig. 4.3. Hence,
i i

v (t) = y (t) + (r (t) - d (t)), i = 1, 2, 3. (4.18)

It can be seen from Fig. 4.3 and (4.18) that the spindle error motion

involves two unknown quantities: amplitude, e, and angle, P. At

least three probes are thus needed to remove the spindle error motion

from the probe measurements; however, the geometrical error, y.(t),
- - 1

can never be obtained for the number of unknown quantities always

exceeds that of known quantities in (4.18). Therefore, only three

probes are sufficient for solving the separation problem. Additional

probes can be regarded as redundant.

With the three probes as shown in Fig. 4.3, it can be proved

that

d cv (t) + av (t) + bv (t)
t 1 2 3

. cy (t) + ay (t) + by (t) (4.19)
1 2 3

'. -

Mwith

a = sin a! sin( + )

b - sin o / sin(a + ) (4.2'))

c = -1

I" .-

",',': :~~~~~~~~~~~~~~~~~~~~~~.-".'.-.". .. i-.. ..... ".--....". . . ..-. .... . . ......... .---.. •.......--.... .-



67

and

a1 + 6 7Fi, 2nr

" > o)

where d is the combined measurement of probes 1, 2, and 3 with the

t

scaling factors -1, a, and b, respectively. Thus, (4.19) shows that

the spindle error motion hi .s been separated from the measurement of

the surface geometry. During the plunge cutting process, R in (4.17)

should be replaced by R . Nevertheless, (4.19) and (4.20) hold in
i

this situation. Instead of applying Fourier analysis to reconstruct

the surface geometry as Whitehouse did, the combined signal d is
t

used in the GAC system by the following manipulation.

According to the angular spacing of these probes and the

direction of rotation, the geometrical errors y (t), Y (t), and y 3 (t)":'.-. can, be

can be expressed by sampled variables, y yt-'g and v
t-f' t-4

respectively. Thus, (4.19) can be written as

d = by - y + ay , t = 1, 2, 3,...
t t t-f t-g

~f - pa/2w

g = p(c + a)/21T

where p is the number of sampled points per revolution. Define

P (z ) b -z + az,,fTd

/, '. . .

.
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t hen

d Pd(z )y (4.22)

Before proceeding to the design of a GAG system, the characteristics

of the polynomial, P (z ),should be analyzed.
* d

4.4.1 Properties of Multiprobe Measurement

The characteristic roots of P (z )1 can be found by solving
d

-1
p dz 0=

or

z 9 i a -z g sin(a + a) + sin =0 (4.23)

Le t

where m is a real number and

0 ~m <p

then (4.23) can written as

gr [cos m(a + a) + j sin in~a + )

r (cos m+ j sin ma)sin( a+ a) +sin =0

-'4V
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Thus,
'5' g-f

rgcos m(a + 8) sin a - r cos ma sin(a + 8) + sin 8 - 0 (4.24)
Vq.

r sin m(a + 8) sin a - r sin ma sin(a + 8) - 0 (4.25)

If sin m(a + 8) 0 0, from (4.25)

f sin ma sin (a + 8)(4.26)
sin a sin m(a + 8)

and, from (4.25) * cos ma - (4.24) * sin ma,

g sin ma sin 8r (4.27)
sin a sin m(

If sin m(a+8) = 0, (4.25) gives

sin ma - 0

and

sin m(a+8) = sin ma cos m8 + sin mB cos ma

sin mB cos ma

C-.-

Hence,

sin m8 - 0

-'-
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And, in this case, (4.24) gives

g g-f(±)r sin a- ()r sin(a + B) + sin 8 = 0 (4.28)

Therefore, if there exists a characteristic pair (r ,m ), it must

eitherT satisfy (4.26) and (4.27), or (4.28). The magnitude of r can

be any positive finite value. One special characteristic pair is

r mr = 1, m = 1

for all admissible a and 8. The solution means that if y is a
t

sinusoidal function with frequency -
p

Y ; sin 2r t/p

then

I -I

Pd(z )yt 0
dt

In measurement, this means that the multiprobe method can not detect

the eccentricity error of the part, that is, the sinusoidal form

error with once-per-revolution frequency. This is the major

constraint of multiprobe method [il]. If this error is caused by

the unbalanced motion of a certain machine member, a balancing

operation should be performed before machining. The higher
:r* * *

harmonics, corresponding to r = I and m - 2,3,4,..., may also be

undetectable to the measurement setup if a and B are not properly

chosen. To avoid this, the following analysis is needed.
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Le

a- 27rm /p(%

2rm /p

From (4.26) and (4.27), the suppression of higher harmonics occurs

when m -m and

mm/p M k (1 m /p) 1, 2, 3,...

m m /p k (1 ± m /p) 1, 2, 3,...

or

k p k p'"''* a --8 (4.29)

m m0 - 1, m0  -a = m2
a

From (4.29)

m k - m k - k[lcm(m m)a8 8 a a'm

where "1cm" is lowest common multiplier. And

kp[lcm(m m],,, . moam )  kp

. ramm8  - gcd(ma,m8 )

where "gcd' is greatest common divisor and k can be any integers

which make m0 an integer. Hence,
0I.
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*kn
M --

gcd(ma,m8 )

or more precisely,

m = mod[g )  I, p] (4.30)
gcd(m am8)

From (4.30), if m is relatively prime to m or gcd(m ,m ) isa 88

relatively prime to p, then

m I, p-i (or -1)

that is, no higher harmonics are suppressed. Sometimes, it is

neither easy nor necessary to achieve this property. A probe

configuration with sufficiently large m is acceptable. This is

because of the fact that higher harmonics usually have very low

amplitudes.

The other desired property of the multiprobe method, which will

be important to the following controller design, is to select angles

a and 8 such that the number of characteristic pairs having r > 1 is

minimal or none.
__.A

It seems that we are not able to derive any explicit function in

terms of a and a for r from (4.26), (4.27), and (4.28). However, the

following rules can help us approach the desired property.

Rule I: It can be shown that if a equals to 8, the characteristic

pair will be

[r = 1, ( ±+ 1)], k 0 0, 1, 2,..., rn-i
m a a

.. ,.
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Therefore, if m is relatively prime to p, there are no zeros of
a

(4.23) outside the unit circle, and there is no suppression of

higher harmonics of Yt"

Rule 2: From (4.23), if IsinO/sina < 1, the chance to get all

the zeros to lie within unit circle is high, but it is still not

guaranteed.

After this preliminary selection process, all zeros of (4.23) can be

checked by numerical solution. Reselections of a and 0 may be

needed.

4.4.2 STC With Multiprobe Measurement

Multiplying (4.1) by p the model of the GAC system becomes
d

A(d - d + 6 ") B(u" - d + 6 t) + C(z )A t (4.31)t r-p c t-k t-p tt

where d is the measurement from the multiprobe method and
t

u mP(z )u (4.32)
t-k d t-k

6 P (z )6

. inP (z
t d t

For the minimum variance control criterion,

2
Min E[d It]

t+ k

the self-tuning control algorithm is similar to (4.11) and (4.12).

4%

,i "
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The model for parameter estimation is

d =F(d - d + 6 ) +
t t-k t-p-k t-k

G(u - d + 6 ) + C(dt  - 6 t) + e t (4.33)

and the control law is

,(d t - dt-p + 6t,) + C(ut , - drtp+k + 6 t+k )

at-p Ut Gu~ - t+k

-_ + C(d t -p+k  6 ) - 0 (4.34)

Since P has at least one zero on the unit circle, and possibly has
d

unstable zeros, the control input ut can not be calculated directly

by using (4.32). Any errors in u t  and u0 ,u ,°., will not be

damped out by Pd " The solution for this problem is to compute

-d

u (ut + ut_f aut-g) b

and

ut = Put  (4.35)
9.

where P, called detuning factor, is a scalar and

0 <p <

The introduction of u and p is similar to that used in [26]%. t

.

S.. . . . . . .. . .. . . . . . . . . . . . .
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crtrin-f sthtth.e i+i thezrsoudae h'" t T + Q/go

where Q/g is the weighting factor of u to stabilize the nonminimum

phase system in the generalized variance control. The selection

criterion of P is that the more unstable the zeros of Pd are, the

smaller p is. Normally, a smaller detuning factor results in less

optimal output.

The previously mentioned properties of stability, convergence,

and robustness can be readily applied here. Conceivably, however,

the performance would be slightly affected, since the objective

function is d instead of yt, and the detuning factor is less than
t

one.

.,
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CHAPTER 5

SIMULATION OF THE GAC SYSTEM

Simulation is an important tool for evaluating the effectiveness

of the self-tuning control algorithm. The stability and convergence

properties described in the last chapter are based on certain

idealized assumptions. They provide, at best, qualitative guidelines

for assuring or improving the algorithms. Still, there are some

questions in real applications that are very difficult to answer

through theoretical analysis. Most of them are related to the

robustness of the algorithms, such as: nonlinearities in the physical

process and controller, insufficient number of order in the system

model, finite precision in numerical computation, and so forth.

Simulation can, however, easily and quantitatively show the best

performance that the control algorithm can achieve under these

practical considerations. And simulation can determine the

appropriate numerical range for the ad hoc factors, such as: the

forgetting factor in parameter estimation, the weighting factor in

weighted minimum variance control, and detuning factor in GAC system

with multiprobe measurement. Also, another important advantage of

simulation is that it can provide experience in significantly

lowering the possibility of failures or damag( n setting up a real

system.

Jy , -.. " - '. - . -
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-,.. There are two approaches for simulating a physical process:

digital and analog. The analog approach is to simulate the process

by using electric or electronic wirings. The analog one is

convincing, while the digital approach, by using a digital computer,

is superior as it is versatile enough to simulate various complex

situations in the real system such as, time delays. Therefore, this

-4 chapter is devoted to the simulation on a general purpose digital

computer, a CDC 6000 system. The simulation with analog wirings and

microprocessor controller will be discussed in the next chapter.

A proper simulation model is not merely the one which contains

as much complexity as the process may have, but it must also be one

whose dynamic behavior is in coincidence with the practical

observations. For machining processes it is well known that chatter

or instability will occur whenever the machining system has
4.I

insufficient stiffness and damping. This important phenomenon will
V.1

be shown in the following simulation.

-\ 5.1 Simulation Model and Conditions

A finishing process of plunge grinding or cutting, as shown in

Fig. 4.1 and Fig. 5.1, is simulated. The specified infeed, Ys(t),

increases at a constant rate and then stays at a desired part

dimension for two or more revolutions. In this text we assume that
this feed motion is provided by a conventional hydraulic or electric

drive. The control action, which is usually small and of high

frequency, can be generated by a separate precision actuator embedded

in the tool holder or in the spindle housing. The piezeoelectric

ii ': "' " . . . . " " " ' " " " " ' - -" " " ' 
""

" ' " " " " " .. . . " , ," ,' " ', 2 -" "." "," ".' "-" : : " " " " " ' " " '." ",- ". - -' . ."
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(a) specified tool infeed
LY (t)

t
is'

LV..i. 1

e rretaraction
-(t) (c) repacio

N-3p N-2p N-p N t

Figure 5.1 Plunge Cutting Process
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translator 154,21,191 is an excellent device for implementing the

precision actuator. The separation of the control motion and the

feed motion is advantageous in releasing the complicate coordination

between the basic NC functions and the feedback control. Also, the

specially designed tool holder, with the kit consisting of a sensor

and a microcontroller, can be easily reinstalled in any other similar

machine tools. This will simplify the manufacturing of the machine

tool and the maintenance of the precision actuator.

To simulate the machining dynamics on the digital computer, the

discrete transfer function of the machine tool structure given in

4. Appendix I is used. A nonlinear process, Y t-max{Yt , Y tp} as shown

in Fig. 5.2, is added to account for the loss of contact which may

occur in finish cutting. Nevertheless, the derived self-tuning

.A.- control algorithm, based on the linear model, will be used for

testing its robustness. Unless stated otherwise, the simulation uses

the following data:

damping ratio of MT (S) - .05

natural frequency of MT (wn) n 9.55 Hz 60 rad/sec

speed of work spindle (Q) - 100 rpm

sampling period (T) - 10 msec

.' " regenerative time delay (p) - 1/ (SIT) - 60

total number of samplings (N) - 900 (i.e. 15 revolutions)

owl system time delay (k) - 1

feedrate - .24 unit/rev - .004 unit/sample

The dimensionless data of feedrate is chosen only for numerical

convenience. Thus, appropriate sensitivities of the transducers and

- - - .. . - - - . . - . : . - . . . ; . . . .
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the power amplifiers are assumed for the simulated geometrical errors

and control inputs. The selection of natural frequency, wn , nd

sampling period, T, is done according to the rule of thumb, wnT in

the range of 0.25-1, or 6-25 samples in each period of the resonant

response of the closed loop system [1131. It can be easily shown

that for different w ns the simulation results will be identical, if

w T remains the same. Therefore, the simulation results in this
n

chapter can be applied to systems having higher natural frequencies.

The system delay, k, can be greater than one if the positions of

measurement and control are not at the same spot. The delay due to

computation is assumed to be negligible.

Another important parameter not mentioned above is the stiffness

- ratio, (k /k ), discussed in Chapter 2. The larger the ratio is, the

more unstable the uncontrolled machining system is. Therefore, this

*ratio will be varied to test the control performance at different

stability levels of the machining system.

The simulation is divided into two major parts. The first part

is to test the performance of the control strategy by assuming that

the geometrical error yt can be measured directly. The second part

is to include the reality of measurement problem and to test the

feasibility of the GAC system with multiprobe measurement. Table 5.1

summarizes the simulation conditions for both parts.

In the simulation results, the geometrical error Yt is

represented by three conventional terms: dimensional error, which is

the mean value of y t out-of-roundness, which is the maximum peak to

,°° . .

/:; ' "'. .. . . . . . . . ....., ".' " - " "• ... "" • • . . ". . '''L .". " ." .. ", . - - , " " '" "
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Table 5.1 Simulation Conditions

simulation n k I STF a AMPL m(n) y fl f2 S I f g p @

1-1 I 2 1 1 .1 0 .004 2 0 .995 .5 50 NA NA NA #

.-2 00. 0 "

1-3 I3 .8 1. .5 " I .. .. .. ..

~~~1-5 4 " " " " " " .99 it " . .

*. 1-6 2 3 " " .004 2 " " " " " " "

I 1-7 2 I " .002 .004 " " .99 " 10 . " " #

1I 8 .0"1'e04 .O008 " " 1 " ' 1 . . .

. I~-9 " " " .008 .016 " '1 " " " " . . .

1." -10 " 3 " 2 .002 " 10

W -1-12 1" 1 .2 1 1" " it" " " I " " " #

1-13 "" 6. " " " " " " " " " " "

L'." 1-14"** " 2. " " " " " 10 " " " "

II-1 " " .1 0 " " " " " 50 I 5 20 1.0 -

-------------------------------------------- I

11-2 "" " " " " " " " " " " .9 5"

' 11-3 " 1

11-4 11 " I 1.0 " " " " .85

":'11-5 " " " " " " "" " " " 27 " "

,,- "IT-6 "" " .002 " 2 " " " " " 20 .88 "

11-7 "" .2 " " " " " " " " " " "

11-8 "" 2. " " " " " " 10 " " " ".-

STF: stiffness ratio, AMPL: amplitude of periodic disturbance
S: init. value of cov. matrix for param. estimation
@: 6(t), #:with retract, %: with pert. input, -: dwell
*" disturb, from clamping, **: use general STC algorithm

L. 'LK
--- V,.
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peak error of y , and roughness, which is the root mean square of y
t t

Since roughness refers to the high frequency error, its value will

not be counted and shown in deterministic systems. Notice that the

definitions of these terms are a little different from those used in

practice. However, they are convenient for evaluating the

performance of the simulated GAC system. These data are shown with

'V polar plots for comparison. Time responses are plotted to check the

performance of both controlled and uncontrolled systems. Negative

value of the responses means that the tool is away from the workpiece

with respect to the specified tool path. The plots of the estimated

parameters are used for examining the behavior of the STC algorithms.

5.2 Simulation With Ideal Measurement

In the first part of the simulation, we begin to test a stable

machining system without stochastic disturbance in order to see how

well the deterministic disturbance can be compensated for by the

self-tuning controller. Then, some stochastic disturbance is added

to the system for examining the noise rejection capability of the

controller. The increase in stability of the self-tuning controller

can be visualized by increasing the stiffness ratio. The importance

of incorporating the physical insight into the mathematical model in

Chapter 4 can be seen by comparing the control performance with that

of the controller which uses the general self-tuning algorithm as

described in Chapter 3.

%-,

- ~ ~ ~ ~ ~ ~ 2 _..d _" -- '. x:
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5.2.1 Deterministic Systems

Fig. 5.3 depicts a simulation run with the periodic disturbance

having frequency 2,Q and amplitude 0.004. Stochastic disturbance is

not added in simulation. It is a stable machining system with

stiffness ratio, k /k -1. The polar plots show that dimensional
c m

error and out-of-roundness are almost eliminated in the GAC system.

Moreover, Fig. 5.3 shows that the GAC system makes perfect tracking

of the desired tool path through the control input which is nearly

equal but opposite to the uncontrolled response. Because of this,

the time-consuming dwell cutting or spark-out process is not needed

for acquiring satisfactory accuracy. Hence, we can have the tool

retract from the workpiece smoothly, at the last revolution of cut,

by letting 6 in equations (4.11) and (4.12) linearly decrease ast

shown in Fig. 5.1b. The simulated control input also demonstrates

this kind of arrangement.

The estimated parameters in Fig. 5.3 quickly converge to steady

state values, although the adopted model order, n, is two instead of

four, the full order of the simulated system. By substituting those

steady state estimates into (4.12), the behavior of the controller
p

can be explained. Since the controlled y is very near to zero in
.t

the middle of cutting, the estimated model can be written a6

-1
(1.37062- .53975z ) 6 t-1 +

-1 -2
(.86733 - 1.69675z t- .86733z )(ut.. + 6t

- (1 - .5364z + .40897z )6 =0

In addition, at that time, 6 is a constant
t

p



AD-A163 083 THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR 2/
COST-EFFECTIVE MANUFACTURE OF (U) PURDUE UNIV
LAFAYETTE IN SCHOOL OF INDUSTRIAL ENGINEERING

UNCLASSIFIED V LIN ET AL SEP 85 N80814-83-K-8385 F/G 13/8 M

EEEEEEmoEEoiElllhEEl.EEEEEEE
EEEEEEEEEllllI
EEEEEEEEE~lllE
E-I-EEBIIIIEE
lflflflflflflflll



-- .2

N.'

1.2 LA 13 6

fw

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANOARDS-1963-A

4p

,?%



7 0

85

UNCONTROLLED) (CONTROLLED)3
DIMENS ERROR - .00123 DIMEN ERROR - .00002
OUT-OF-ROUND .00861 OUT-OF-ROUND .00066

.4 UNCO3NTROL RESPONSE

-. 04

0.0,

-. 04

.04.
0.0

COTRL0N4
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0.00
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-2.00
0- 90 180 270 360 450 540 630 720 810 900

Figure 5.3 GAC System With Periodic Disturbance Only
(Simulation 1-1)
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6 =6 .24

t

Thus

-1 -2
(1 - 1.9562912z + z )ut_ 1 = .004376 (5.1)

The polynoial on the left hand side of the above equation can be

expressed as

-1 -2
1 - 2(cos 2lrwT)z + z

which represents a sinusoidal wave of frequency w. Solving for w

gives

w -200 rpm 2Q

which is the frequency of the periodic disturbance in the simulation.

This explains the usage of a sinusoidal control input in Fig. 5.3 for

countering the periodic disturbance. In addition, let

U t u + u s(5.2)
,,I p 8

where up is the sinusoidal component and us is the static component.

Substituting (5.2) into (5.1) gives

u s (.1)6 = (k / k )6
c m

The above solution explains why the self-tuning controller can

automatically compensate for the static deflection during the cutting

operation.

_,-
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- Because of the discrepancy of the model order and the

nonpersistent excitation of the output, the converged parameters are

merely a set of estimates which satisfy the minimum variance

criterion as shown above. When the specified depth-of-cut begins to

change at the end of the cut, it can be seen in Fig. 5.3 that these

estimates also change to a new set of values, accordingly, to

maintain the optimality.

A time varying forgetting factor is used in the above simulation

to improve the convergence rate of the estimates and the output; it

is of the form shown below:

A-f -f / t
1 2

where t is the sampling time instant at t - 1, 2, 3, ... , and

f" 0 .995, f2 = .5

This forgetting factor is low at the start-up of tuning so that the

inaccuracy of the initial guesses can be forgotten as fast as

possible. The forgetting factor then increases to fl asymptotically.

f I s slightly smaller than one to permit the self-tuning controller

to adjust itself for the environmental changes or modeling errors.

- ,. Fig. 5.4 shows a similar simulation run with constant forgetting

factor

A - .995

It shows that the controlled response and the estimated parameters

- . .. . . . . -
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(UNCONTROLLED) (CONTROLLED)
DIMENS ERROR - .00123 DIMENS ERROR - .00001
OUT-OF-ROUND .00861 OUT-OF-ROUND .00088

V..V
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0.0
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0.0
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0.0
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2.00

1.00
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Figure 5.4 The Effect of Forgetting Factor on the
Convergence of GAC System (Simulation 1-2)
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converge far slower than they do in the simulation run shown in Fig.

5.3. A rule of thumb, gained from simulation experience, for

selecting f and f2 is

.99 4 I 1.0

.1 f2 4 1.0

Faster convergence rate means that the GAC system can take larger

depth-of-cut, shorten the production time, and still have good

accuracy.

As it was mentioned, the periodic disturbance may result from

the stiffness variation of the clamped workpiece. A work-chuck

assembly with three clamping jaws is simulated by using a time

varying stiffness ratio

(k / k )(I + c sin(3Qt + y))~c m

C = .2, y - .8

Fig. 5.5 shows that the self-tuning controller can compensate for

this kind of error source as nicely as it does for the former

periodic disturbance. When the phase angle y is varied to any other

value, the simulation results remain very similar. This is an

advantage of using STC because, in practice, different diameters of

the workpiece have different phase shifts of the jaws [811.

The polar plot of the uncontrolled geometrical error has six

lobes instead of three in Fig. 5.5. This is due to the loss of

% %
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contact which occurs in the last two revolutions. Same nonlinear

effect can also be seen in Fig. 5.3, which has four lobes rather than

two.

To see if the self-tuning controller can compensate for two or

more periodic disturbances, two sinusoidal functions

.004 sin(Ot + y) + .002 sin(B.-5t)

are simulated as shown in Fig. 5.6. It shows that the geometrical

error is reduced somewhat but not satisfactorily enough, if the same

self-tuning model and model order are used. The time varying

estimates, together with the coarse control accuracy, indicate that

the assumed model order is insufficient. As we have shown that the

cancellation of the periodic disturbance is due to the estimated

control model having the same dynamics as that of the disturbance

function, therefore, the model order must increase to four when there

are two sinusoidal disturbances. Under the same simulation

conditions except that

w

n -4

and

.*99 -. 5/ t

Fig. 5.7 shows that the geometrical error significantly reduces and

the parameter estimation converges fast again. Besides these, the

simulation shows that the frequency of the periodic disturbance need

not be integer multiples of the angular speed of the spindle.

s711

%'



-- ,., ~ - .rrru'ru.rrr,- - -rr 1 r 47 P& -- " -- .- .f*

92

(UNCONTROLLED) (CONTROLLED)
DIMENS ERROR - .00113 DIMENS ERRO3R - .00008
OUT-OF-ROUND .01120 OUT-OF-ROUND .00328

.04 UNCONTROL RESPONSE

0.0

-. 04

.04 CONTROL RESPONSE

.4. -. 04

.. 04

0.0
CONTROL INPUT

-. 04

4.00

2.00

4, 0.00

-2.00

-4.00 t
0. 90 180 70 360 450 540 630 720 810 900

Figure 5.6 GAC System With Insufficient Model Order
for Two Periodic Disturbances
(Simulation 1-4)



* .. ~93

(UNCONTROLLED) (CONTROLLED)2.i.DIMENS ERROR -.001 13 DIMENS ERROR .00000
OUT-OF-ROUND .01120 OUT-OF-ROUN .00045

..'. . . . .. . . . . .

.04 - JICONTROL RESPONSE

0.0

-. 04

0.0

-. 04

.04

0.0

4.....04 
CONTROL INPUT

4.00

2.00

0.00

-2.00

-4.00
0 90 180 270 360 450 540 630 7 20 900- oo

Figure 5.7 GAC System With Sufficient Model Order
for Two Periodic Disturbances
(Simulation 1-5)

v~%



494

.4.

9area from the tool tip during the machining operation. The system
4.. . p:

ime e w n desi rabe abrun cthance. sWhen s

3, simulation shows that the self-tuner we used is not fast enough to

minimize the transient response due to the abrupt change of slope of

4* the depth-of-cut in the last but one revolution, and is unstable in

the last revolution where loss-of-contact occurs most often. A

rational solution is to alleviate the change of slope by introducing

a perturbation input as shown in Fig. 5.1c, where

6" t-(N-2p)
A(t) - - I [1. + cos i- p ], if N-3p < t 4 N-p

= 0, otherwise (5.3)

The perturbation provides excitation for activating the tuning of the

V, controller parameters to cope up with the input changes. Fig. 5.8

shows that before applying perturbation A(t) the controlled response

is still perfectly regulated despite the large time delay. The

perturbation, then, starts at the time instant N-3p. The transient

response is significantly reduced and satisfactory out-of-roundness,

0.00125, is thus obtained. Since the perturbation tends to slow down

the infeed, the tool should stay at the final position rather than

retract at the last revolution.

The simulation of the above deterministic systems clearly

illustrates how the self-tuner behaves to achieve the optimal

performance. Next we shall find how the same controller reacts in

the presence of stochastic disturbances.

t . .1,... . .? . . .-. -.. .. .. .: . . . . . . . . . .- .. , -.. . .. . . .-. . .-. ... ' . ..-.. . . .



95

(UNCONTROLLED) (CONTROLLED)
-~ DIMENS ERROR - .00123 BINENS ERROR - .00004

OUT-OF-ROUM .00861 OUT-OF-ROI.W .00125

.04 I-UNCON'TROL RESPONSE

0.0

-. 04

.04 CONTROL RESPONSE

-.04

0.0-

CONTROL INPUT
-. 04

tr
0.00f

-2.00 9

-4.00t
0 90 180 270 360 4 540 630"'720 810 900

-I.Figure 5.8 Perturbation Input for GAC System

*With Large Time Delay (Simulation 1-6)



96

5.2.2 Stochastic Systems

By adding the following stochastic disturbance

W t e + 2.Oe + 1.31e + .28e

e Gaussian white noise with zero mean and rms .002
t

to the same machining system, Fig. 5.9 shows that, compared to the

uncontrolled result, the controlled dimensional error is minimized

significantly and the out-of-roundness and finish are also reduced by

half. The controlled finish, actually, is very close to the rms of

e , the minimum that an optimal controller can achieve. The periodic
t

disturbance is smeared by the stochastic disturbance as can be seen

in the plots of the time response. The estimated parameters,

therefore, do not reflect the dynamics of the sinusoidal disturbance

any more. Instead, they constitute a suboptimal controller to

minimize the variance and the bias of the output. Increase of the

model order to four, full order of the simulated system, will

slightly improve the geometrical accuracy. Nevertheless the true

parameters of the system can still not be identified. This is the

general characteristic of the implicit type of self-tuning control

when the desired response is not spectrally rich enough. Besides,

the insignificant improvement in accuracy by the full order means

that the implicit type of controller is rather robust for a mode of

lower order. For higher level of disturbance, Table 5.2 shows that

the self-tuner maintains near optimal accuracy.

•--'--.. -.-
+..'..'.. ....> -.. .:. ..'2.. -,." ;'+'/, .+:."+..-.+..<' '.. ,,Z . .":." ;. -'.+".." .',-.'.,"'. "+ ..'>...'..N .'o .- .- . ....
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Disturbances (Simulation 1-7)



98

Table 5.2 Simulation Results of Different Disturbance
Levels arnd System Delays

simulationj DIMENS OUT-OF- FINISH
condition j ERROR ROUND [RMSI

1-7 0.00020 f 0.01074 0.00242 1
I(-.00162) (0. 02097) (0.00552)

1-8 1 0.00070 0.02217 0.00469
I(-.00048) (0.04205) (0.00955)

I-9* 0.00226 0.04411 I 0.00879
(0.00360) j(0.07682) J(0.01801)

1-10~ 0.00161 0.02009 0.00444
(-.00162) (0.02097) (0.00552)

I-1 0.00122 0.01877 0.00469
I(-.00162) (0.02097) (0.00552)

(data) - result of uncontrolled system
* - high level of disturbance (see Table 5.1)

**- large time delay (see Table 5.1)

%%

2A



99

When the system delay k is greater than one, as we have learned,

perturbation in the last few revolutions of machining is necessary to

alleviate the input changes and make the controller stable. This is

particularly true in a stochastic system. Only with the

perturbation, (5.3), we can obtain the geometrical accuracies as

shown in Table 5.2 for k-2 and 3. The results, though quite poor

compared with those for k-i, are still near optimal, because the

theoretical rms for k-2 is 0.00448, which coincides with the

simulated results. The change of the output variance due to the

increase in time delay may not be so large as was obtained through

simulation. It depends on the actual dynamics of the stochastic

disturbance and the system in real operation. A good practice is to

reduce the system delay for measurement as much as possible.

The important phenomenon of the machining process, chatter, can

be simulated by increasing the stiffness ratio. It is found by

simulation that the uncontrolled system begins to be unstable as the

stiffness ratio increases to .15, which is close to the theoretical

value 0.105. Fig. 5.10 shows that, when the ratio is 0.20, the

uncontrolled system becomes more unstable and produces regenerative

chatter. And, as the theory in Chapter 3 predicted, the chatter

frequency is 10.8 Hz which is slightly larger than the natural

frequency, 9.55 Hz. The controlled system, however, remains stable

with accuracy as satisfactory as that shown in Fig. 5.9. The

stiffness ratio can even be raised to 6.0, as shown in Fig. 5.11, and

,. the controlled system maintains good geometrical accuracy.

Therefore, the increase in stability is at least by a factor of 40

7. -
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(-6.0/0.15) in the simulation. It is comparable with the results of

Comstock et al. [291 and of Nactigal and Maddux [76]. According to

the analysis in Chapter 4, since the simulated system has a stable

-1 ?m
polynomial B(z ) in (4.1), the controlled system is stable no matter

how large the stiffness ratio is. This is similar to what is claimed

by Mitchell [66] that a factor of 1000 increase in stability is

attainable. Experimentally, however, the stiffness ratio is found to S

be of the order of 0.5 to .02 and damping ratio to be about 0.25 to

0.01 [104]. Therefore, it is more appropriate to say that an

accurate and chatter-free machining can be obtained by means of the

self-tuning controller.

To see the necessity of incorporating the physical insight into

the self-tuning model, the general model in Chapter 3 is tested and

compared. A constant but unknown term is added in the model to

account for the static deflection resulting from the cutting load.

With the same order of model and other simulation conditions as those

of Fig. 5.10, the general self-tuner also results in a stable system

as shown in Fig. 5.12. The controlled accuracies, however, are much

worse than those of Fig. 5.11, which uses the proposed model and

,. operates in a more adverse condition, k c/km-6.0. It is found that, as

the stiffness goes higher, the controlled inaccuracies of the general

self-tuner become unreasonably large and the system can be considered

as being unstable. hence, careful modeling of the process to be

controlled is very important to enhance the effectiveness of self-

tuning control.

* '. 1%
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5.3 Simulation With Multiprobe Measurement

The second part of the simulation is to test the GAC system with

multiprobe measurement. The interesting properties of the multiprobe

measurement, as we have analyzed in Chapter 4, can be verified by

simulation with deterministic disturbance only. Selecting proper

value of the detuning factor is very important to achieve geometrical

accuracies as good as those of the former simulation. With the

stochastic disturbance added in, the performance of noise rejection

,-.,,. and increase in stability can be evaluated.

5.3.1 Configuration of Probes for Simulation

The configuration of the multiprobe measurement, as shown in

Fig. 4.3, is as follows:

0 0
a 90 °  30

and thus, (4.21) gives

-1 2 -5 1 -20
Pd(z -- z + z (5.4)

which has the following characteristic roots:

je 0
0.933 e -±25.550, ±46.450, ±97.55° .

0 0
±118.450, or ±169.55

je0~ 6  0 0 0 0
1.000 e , +, 66° , ±78 °

, ±138 , or -150

S+8 13 o 1

, .. . .. . . . . . . . . . . .- . . " .. - .- .. . ,. .- ." . ., € -,- - -; .~ .. . - , .
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This arrangement is favorable for the self-tuning control because all
-1

the zeros of Pd(Z ) lie inside or on the unit circle. However, from

(4.30), it suppresses harmonics with frequencies m 9 , where m

equals to

m mod[ kp + 1, p], m a 15, m 5, p 60° !i " m~d gcd(m ,m)a,.

- mod[12k ± 1, 60], k - 0, 1, 2,...

" ~~1, 1,1,.

We shall find what the controlled geometrical errors would be, if the

periodic disturbance happens to be suppressed by the multiprobe

measurement. Solutions will be made to overcome the control

deficiency in this type of situation.

5.3.2 Test of Detuning Factor

As stated in Chapter 4, pd(z) has at least one zero on the

unit circle; therefore, a detuning factor, 0 < P < 1, is needed in

(4.35) for computing the control input. Without using the detuning

factor, i.e., p-1, Fig. 5.13 shows unsatisfactory control results

under the same conditions of simulation as shown in Fig. 5.3. We see

that the uncontrolled response is replaced by the controlled response

which has compound sinusoidal wave behavior during cutting. This

compound wave, through spectral analysis, consists of harmonics with

frequencies a, 1IM, and I3, which are the components invisible to

the multiprobe measurement. When the detuning factor is added in, 7

IL 7
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.* P-.95, Fig. 5.14 shows that this compound wave dies out

asymptotically, and satisfactory geometrical accuracy is obtained

thereafter. The controlled response also shows that, due to the

detuning factor, the controller acts less optimally. The specified

infeed is not tracked as perfectly as that in Fig. 5.3 during the

operation. Therefore, instead of retracting the tool, the tool is

commanded to stay at the specified position in the last revolution of

cutting. This gives the self-tuner more opportunities to reduce

excess geometrical errors.

5.3.3 Test of lnvisible Harmonics

For the case of suppression of harmonics in multiprobe

measurement, Fig. 5.15 shows that the geometrical errors resulting

from periodic disturbance with frequeacy 9 can not be removed from

the GAC system. This result is quite understandable because the

multiprobe measurement is unable to detect any errors having this

frequency. The simulation, however, shows that the higher harmonics

in the uncontrolled polar plot, which result from the nonlinearity of

the system, can be compensated for by the controller. The geometry

of the controlled machined part is a near perfect but eccentric

circle. The indicated out-of-roundness actually represents twice the

eccentricity of the machined part. For products whose roundness is

much more critical than the eccentricity, the GAC system with

,' multiprobe measurement is still very effective. Otherwise, the best

way is to balance this periodic disturbance before the cutting

operation takes place.

I ' : al ..,•,,. . .. , .~~- ,,a a. l~
a

-
t

.,, a a., - , U• . . . . . . . . . . . .,
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The suppression of the fundamental harmonic is common to all

configurations of the multiprobe measurement. The next higher

suppressed harmonic of this particular configuration is of frequency

110. Conceivably, Fig. 5.16 is obtained by showing that the

reduction of the periodic disturbance is very small. To overcome

this deficiency, the configuration is changed to

a 132, = 30

that is

-1 -5 -27
Pd(Z ) = 2.40487 - z + 1.618U3z

which has unstable zeros

±j140.43118 ±j73.1841
1.00288 e 1.00444 e

And, from (4.30), no harmonics are suppressed by this configuration

except the fundamental one with frequency a.

Since some of the zeros of the new Pd(Z ) lie outside the unit

circle, lower detuning factor, p-.85, is required to stabilize the ,i

control system and result in satisfactory accuracies as shown in Fig.

5.17. However, the low detuning factor also detracts the performance

somewhat. Other configurations can give similar results, too. It is
-1

found by simulation that the farther the unstable zeros of Pd(z )

are away from the unit circle, the lower the detuning factors needed

is, and the less satisfactory the accuracy can be. The configuration

with a = 8 has all zeros of Pd(z ) on the unit circle, but it is
d

--
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very possible to miss the detection and the control of the

disturbances having frequencies not equal to integral multiple of

frequency a. The determination of the probe configuration depends

on the convenience of the spatial arrangement of the probes, the

prior knowledge of the disturbance frequencies, and the locations of

the zeros of P d(z-).

5.3.4 Test of Stochastic System and Stability

Here, we return to the original probe configuration

0 0
corresponding to a-90 and -30 . Under the same conditions of

simulation as those used in Fig. 5.9, good control accuracies are

obtained as shown in Fig. 5.18 in the presence of stochastic

disturbance. The selected detuning factor, p-0.88, is smaller than

that used in Fig. 5.14, equal to 0.95. In general, a stochastic

*.o control system requires a lower detuning factor t'an a deterministic

system does. The forgetting factor, however, changes in the opposite

direction because the self-tuning controller needs more data for

variance reduction in the stochastic cases. Also, it is found by

, simulation that a large forgetting factor is good for a low detuning

factor. Therefore, the forgetting factor

X = 1.0 - .5 / t

is used in Figs. 5.17 and 5.18 and the following simulation.

As the stiffness ratio increases to 0.2, the controlled system

remains stable and accurate, again. Comparing the controlled

responses of Fig. 5.19 to those of Fig. 5.18, we see that, in the

• ''i..' ..', ..]._'....• . -l" ., , , ! " ":"-:- -'. , -'.;" : '-",- -" , 4 ' .-', .: "4 '. .. 1 . ] ;5 -:.,
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middle of the operation, the static error in Fig. 5.19 is

approximately twice that of Fig. 5.18 with the same detuning factor.

And, as shown in Fig. 5.20, this static error increases

proportionally when the stiffness ratio goes up to 2.0. The system is

still stably controlled. However, in the stage of dwell cutting, the

static error decreases more slowly than the specified depth-of-cut.

Consequently, increase of the duration of dwell cutting will result

in better geometrical accuracy. In Fig. 5.20, an extra revolution of

dwell cutting is added and satisfactory accuracies are obtained as

shown. The large dimensional excess suggests that another revolution

of dwell cutting can be beneficial.

The increase in stability, found by simulation, is by about a

factor of 20. The detuning tactor is the main reason for the limited

closed loop stability. However, the improvement in performance is

quite significant.

5.4 Summary of Discussions

In the first part of the simulation, where the measurement

problem is not considered, we observed the following:

(l.a) Deterministic disturbances can be fully compensated for by the

self-tuning controller irrespective of the amplitudes, the frequency

contents, and the types of the disturbances.

(I.b) A time varying forgetting factor is very usetul not only to

speed up the convergence at the startup stage, but also to enhance

the adaptability of the controller for the environmental changes or

modeling errors.

', -

.- " "'. .. ".. . . '.. .'L.'--."-." .i.?- ,., .. • " "" • " ... . - - - ,.". .. . .. i .-- "'



117

(CONTROLLED)
DIMENS ERRO -.00211
MJT-8F-ROMW .0130M
FINISH (RMS) .00298

0D. 3

0.,)

-0.3

-~.06 CONTROL RESPONSE

0.(0

-.06

0.3
-. ,0.0Pi

-03 CONTROL I NlJT

2.00

1.00

t
0.00

-1.*00

V t
0- 90 .80 270 360 450 540 630 720 810 900

Figure 5.20 GAC System With Multiprobe Measurement for More
Unstable Machining Process (Simulation 11-8)

nV.



118

(I.c) Self-tuning controller gives perfect tracking during the

operation. However, if the system time delay is greater than one,

the controller may not be able to follow the input change as quickly

.' i, toward the end of the cutting operation. Perturbation can be added

before and during the input change. Transient response will thus be

reduced.

(I.d) In the presence of various levels of deterministic disturbance

and stochastic disturbance, the implicit type of self-tuning control

is successful in accomplishing near optimal performance with lower

order model. The controller we used is robust.

(I.e) The increase in stability can be by a factor of at least 40 for

the self-tuning controller. In other words, the self-tuned system is

4 chatter free.

(I.f) A self-tuning model derived with physical insight into the

machining process can give much better performance than the general

1 .self-tuner.

In the second part, multiprobe is used to tackle the measurement

problem of the GAC system. By simulation, we have the following

,"-," important findings:

(Il.a) A detuning factor is crucial for the success of the GAC system

4
with multiprobe measurement. Normally, it has a positive value

smaller than one.

(II.b) The multiprobe measurement always suppresses certain

t, harmonics. Those disturbances, thus, cannot be reduced. For the

disturbance with the same frequency as the spindle rotation, the GAC

system can not do much except removing disturbance induced by the

4'Ma
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nonlinearity of the system and generating a perfect round but

eccentric part. For higher harmonics, the uncontrollability can be

avoided by selecting the probe configuration properly.

(Il.c) The probe configuration determines the zeros of Pd (z). The

farther the unstable zeros are away from the unit circle, the smaller

the detuning factor used should be, and the less satisfactory the

geometrical accuracies obtained are.

(lI.d) Stochastic systems need a lower detuning factor than

deterministic systems. The detuning factor can be adjusted together

with the forgetting factor to get better performance. The detuning

factor limits the increase in stability which the GAC system can get.

However, the improvement is still very satisfactory.

'V.' '.

.. ..°
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CHAPTER 6

A COMPARISON OF STC AND FCC

As stated in Chapters 1 and 4, the stochastic properties of

machining processes should be considered while modeling a GAC system

" for removing the nonrepeatable machining errors [47,48,77,78].

However, research engineers have just started to accomplish this

actively in recent years. Rao and Wu [84] proposed "compensatory

control" for roundness control in cylindrical grinding. Of late this

technique was expanded and called "forecasting compensatory control"

(FCC) [54,55,68,69].

" Basically, FCC is a GAC method which uses in-process

measurement. The machining process is modeled by a stochastic

process, AR(m), in FCC. The compensation is obtained by giving an

input which cancels the error predicted by the stochastic model. The

modeling strategy of FCC ignores the relationship between the inputs

and the outputs of the machining system. Also, it lacks a systematic

approach for designing the compensatory controller. Thus, the

I.-. performance of the compensated system can hardly be assured.

"- ~ Realizing this, we propose the STC method in Chapter 4 for

cylindrical machining processes. This technique adopts a more

rigorous modeling and control strategy. The stochastic model is

7 deduced from the machine tool dynamics which has been discussed in

% .".0 %

.4 . .4 .4,. .. . . . . . . . .
- -, - ..- --- -'.." " ,-.' ' '.'" ' t ¢ " . • • , . • .,' " '. * .k% ',-% 

,
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Chapter 2. Therefore, the self-tuning controller can be designed and

analyzed systematically for a better control performance.

The objective of this chapter is to compare the performance of

these two control strategies by theoretical investigation, digital

$ simulation, and analog test. In theoretical investigation, the

examined in the aspects of command tracting and disturbance

rejection. In digital simulation, a metal cutting process is

simulated to test the machining accuracy and stability obtainable

from both strategies. The analog test is to compare the control

performances of both strategies which are subject to the constraints

*J 4 of finite word length and sampling in microprocessor based control

systems.

6.1 Theoretical in-vestigation

For simplicity, a general single input single output (SISO)

system, as shown in Fig. 6.1, is used for this comparison. All the

variables and dynamics are presented in discrete time domain. The

dynamics of the process, G , is assumed to have the following
p

transfer function

% G = B(z - ) / A(z - ) (6.1)
p

where

.--

-1 -1 -n
A(z )= 1 az +... + a z

-k I"-p

''"-1 z-kB z-1°

-.'.- B(z ) = B(z )

S. . ... * ° ii

.. .. v,. --- ,.". ..--.....-.- .:.-.. ...-. -.- > . .. --.-- ....-...-.. .
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.. + W

-. Figure 6.1 A SIS0 Control System
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-k -1 -n
z (b + b z +... + b z )

0 1 n

and z is a backward shift operator. The coefficients, a. s and

b s, are related to the dynamic characteristics of the process, and
' :"i

they are considered to be unknown in adaptive control. The order n

and the time delay k are, however, assumed to be known here. The

deterministic disturbance z and the stochastic disturbance w are
t t

unmeasurable, but bounded. The observed output y is fed to the
t

controller G , where the control input u is generated by the
c t

specified control strategy or algorithm.

STC

The design of the STC controller is based on the certainty

equivalent principle. Therefore, we shall first discuss the design

of the optimal controller as a convenient way for investigating the

theoretical control performance of the STC sysetem. A theorem for

the STC controller, then, will be presented to substantiate the

findings.

The output of the system as shown in Fig. 6.1 is governed by

y= G u + z + w (6.2). 1,t p t t t

To simplify the comparison, the stochastic disturbance w can be
t

omitted presently without loss of generality. Hence,

y =G u + z (b.3)
t p t t

Since most of the stationary deterministic disturbances are constant

,

4 , , ' -' . . . . - - . , - , . .. . --- . - , . , . - ,. . . , . . . . , . .
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or periodic in the time domain, one can always find an operator of

the form

-1 -1 -s"-"
P(z )=P + pz + + p z

0 1s

such that

~:1

P(z- z 0 (6.4)
t

By substituting (6.1) into (6.3), it gives

B-(z -1 )

y t-k u + z (6.5)
A(z- ) t

Suppose that the output y can be predicted bv the linear
t+k

combination of the observed outputs and inputs, that is,

-1 -1
Yt+k =F(z )y + G(z )u (6.6)

where

-1 -1 .

F(z ) f + f z +o 1

-I -I 1-

G(z ) =go + gz +

Thus, for the desired output yt+k' the control input should be

1 * F(z-)
G t -- (6.7)

G(z- ) t+k )

Substituting (6.7) into (6.5) gives

* . *( , .



125

/*

Yt+k AG + BF t+k AG + BF Zt+k (6.8)

where the operator z-  is omitted for simplicity in the expression.

In order to achieve yt+k - Yt+' F and G must satisfy

--Bo AG +- BF = AG + zk B'F (6.9)

Gz t+k  0 (6.10)

From (6.4), if P is a factor of G, the condition (6.10), cancellation

of the deterministic disturbance, will be satisfied. Also, the

condition (6.9) requires that there be a factor B'(z - ) in G(z-).

Therefore,

G EB'P (6.11)

where

-1E=e +e z +...
0 1

Substituting (6.11) into (6.9) gives

I = APE + z-kF (6.12)

There exists a unique solution for E and F in (6.12), if the order of

E equals to k-I, and the order of F equals to n+s-1.

The above derivations demonstrate that the system can be

- -optimally controlled, yt = y, if the controller (6.7), with F and G
t t

satisfying (6.11) and (6.12), is used. In STC, where the polynomials

* .. .*
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F and G have to be estimated through a certain adaption mechanism,

the same optimality can also be achieved. This can be seen from the

following theorem [39]:

Theorem: If the system (6.5) satisfies

(i) all the zeros of BP lie inside or on the unit circle.

(ii) all the zeros of transfer function B/A lie strictly

inside the unit circle.

(iii) the zeros of the polynomial BP on the unit circle have

a Jordon block of size one.

the self-tuning controller

Yt+k =Py t + Out (6.13)

e e+-1 t-1 -t - t -) (6.14)

T
S 4)

StI = S t-2 t-k t-k t-2 (6.15)

where 0 Ti
et = [ rt,..., 9, 91 . T

t 1

,'.'..', = [Yt,Yt ,...,u ,
,.-.t•t t- ut ut-1

will lead to a stable closed loop system, and the output will

converge to yt asymptotically.

.t.1

The inclusion of the polynomial P in the above assumptions,

which results from the existence of the deterministic disturbance
.t.
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can be taken away if P has no multiple roots on the unit circle. For

the system having the stochastic disturbance in addition to the

deterministic disturbance, the above self-tuning controller can be

extended by incorporating extra parameters in 6 to account for the
t

dynamics of the stochastic disturbance. Again, the disturbances can

be reduced and the specified output will be tracked [39].

An important point of the theorem is that the estimated

polynomials P and G are not necessary to satisfy the relationship as

(6.12) for the optimal performance of the output. This usually

happens in the applications of STC, particularly for the above type

of self-tuning controller which estimates directly the parameters of

the controller rather than those of the process to be controlled.

The STC system will find its own parameters to satisfy the control

objective. This can be seen from the simulation results in the next

section.

FCC

In FCC, it is assumed that the output of an uncontrolled

machining system, y t can be fitted by an autoregressive model, AR(m)

[83]

-y e
t t

1 m

This model can be derived from (6.2) by letting u -0 and converting
t

the disturbances into an autoregressive process with white noise e
"" °'"t

-1p

. ..-pl
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By the following factorization

I - V'E + z-k

-I -k+ I
E e0 +eIz +... ek z

-I -m+1
.. , +0z +...+ z

0 1 mn-I

the output y can be predicted by the linear combination of its

previous outputs at time t, t-1,..., t-m, that is,

Yt+k = t+k + Ee t+k

"t (6.16)
t+k t

For the desired output yt+k' the control input of FCC is [84,54,55,

68,691

ut Y* Ytk *

t = -t+k - = Yt+k - OYt (6.17)

For the system with deterministic disturbance only, substituting

(6.17) into (6.5) gives

V..

B' A_V'.- y + z (.18
Yt+k A + B Yt+k A + B' tik (6.18)

Equation (6.18) shows that it is not possible to realize y k y
ti-k ti-k

or to cancel zt+k, provided that the control law (6.17) is used. The

reason for the inability to fully track the specified output or

eliminate the disturbance is that FCC does not consider the dynamic

. . . .. . . . . ....": " :: . " " - . .' . . . . . . .• - - '-- : -' - -"- -".
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relationship between the system output and the compensation input.

This is not the case for the in-process control of the machining

system.

, When y -0, from (6.18), it gives
* t+ k

A
Yt+k - A + B' Zt+k (6.19)

The above closed loop system is the same as a conventional control

* system with a unit negative feedback. The simulation in the next

section will show this characteristic.

6.2 Digital Simulation

In digital simulation, the plunge cutting process described in

Chapters 4 and 5 is simulated and both techniques are tested on a CDC

6000 computer system.

The model used in STC, from (4.1), is

A(y - y + 6 ) B B(u - y + 6 ) + Ce (6.20)
• t t-p t tk t-p t t

where

-1 -n
A 1 + a z + ... + a z

I. n

-1 -n
C I + c z + ... + c z

I n

The STC algorithm, from (4.11) and (4.12), is to update the

.N%
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parameters of F,G, and C in the following model

y - P(y -y + 6 )+ (u -y + 6 )+
t t-k t-p-k t-k t-k t-p t

C(yt  - 6 ) + E (6.21)-p t t

and to generate the control input by the following control law

ut M (-/2 0o)[!(y - y + 6 ) + (C - 9 )(u - y + 6 )
t 0 t t-p t 0 t t-p+k t+k

+Cy - 6 )] + y - 6 (6.22)

+ C(Yt-p+k t+k t-p+k t+k

In designing the FCC controller, the model for parameter

estimation is

Yt 0Oyr-k +Iy + "'" +  + m +c (6.23)
I -kI n- tk-+

where the estimate is added to account for the nonzero value which
m

may exist in y And the control law is

ut  - -0 Yt - - M- 1 - m (6.24)

Recursive least squares method is used for updating the

parameters of both control techniques. Because of the existence of

the deterministic disturbance the order of the model in (6.20) is not

less than four. However, to test the robustness of the STC system

for the reduced order of the model, n-2 is assumed. Hence, there are

- "- seven parameters to be estimated in (6.21) -

SfOrl,9O,9l92, el, and a2 . For the same complexity in parameter

estimation, therefore, the order m in (6.23) is assumed to be six.

4..- * * , *%
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The simulation results depicted in Fig. 6.2, where the

stochastic disturbance is set to zero, demonstrate that the

originally unstable cutting system, k /k -0.2, can be stabilized by

the self-tuning controller, and the machining error can be nearly

* - eliminated. The polar plot represents the final geometrical error of

the machined part. The control input shows that the self-tuning

controller automatically compensates for the unknown deterministic

disturbance and the structural deflection resulting from the nominal

cutting force. The estimates 0 , E and 2 which are related to
0 1 20

the control input, satisfy (6.4). It shows how the self-tuning

controller adjusts its parameters to counter the deterministic

disturbance.

For the stochastic machining system as shown in Fig. 6.3, STC,

again, stabilizes the system and produces good accuracy. The error

left on the machined part has the root-mean-squares (rms) value

approximating to that of e in Chapter 5, 0.002, which is the minimum
t

value we can get.

When the structural compliance is doubled, k /k -0.4, the
c m

uncontrolled cutting system becomes more unstable as shown in Fig.

6.4. The STC system still shows good stability and accuracy.

As mentioned in the theoretical investigation, the STC algorithm

used in the above simulations belongs to the direct or implicit type

of adaptive control [39J, which tends to update the estimates for

minimizing the output error rather than for matching the true

parameters. Hence, we can get the optimal or nearly optimal output

- ... ..-. .
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despite the nonconvergence of the estimates. Furthermore, the linear

and reduced-order controller provides a certain degree of robustness

by showing satisfactory stability and accuracy in the simulated

system which has a more complicated structure.

Figs. 6.5 and 6.6 show the simulation results from FCC with the

simulation conditions corresponding to those of Figs. 6.2 and 6.3

respectively. Although the systems are stabilized by the forecasting

compensator, the accuracies of the parts are much worse than those

generated by the STC system. The out-of-roundness shown in Fig. 6.5

is about four times that shown in Fig. 6.2. The control response and

the control input show that the structural deflection during the

machining operation is only partly compensated for. It confirms the

conclusion from the theoretical investigation that the forecasting

compensator is essentially a unit feedback controller.

By considering the confidence interval of the parameter

estimation, the estimates of Fig. 6.6 reveal that the FCC machining

system, when k = 1, can be modeled as a random walk process

yt + et (6.25)

Consequently, the control input is

u -y (6.26)
t t

which is the simple compensatory control (SCC) by one step delay

[54]. The control inputs and the system outputs in Figs. b.5 and b.b

satisfy approximately the relationship given by (b.26). The same
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results can be seen in the cutting test conducted by Moon et al.

[691.

For the less rigid system as that simulated in Fig. 6.4, FCC is

unable to stabilize the system any more, as shown in Fig. 6.7.

Further simulation show that the increase in stability gained by STC

can be five times that by FCC.

6.3 Analog Test

In the above simulation, we have compared the control

performance of the two control techniques by using the machining

model of chatter control and the experimental machining properties.

Therefore, similar control performance may be expected in the control

of the real machining operation. However, some considerations in

real implementation still need to be tested for assuring the actual

performance. The analog test is to examine the control performance

of the two control strategies subject to finite word-length and

sampling rate of the microprocessor controller. The system setup is

shown in Fig. 6.8.

The electronic circuit for the test is an RLC low pass filter

representing a second order dynamic system as shown in Fig. 6.9. The

input disturbance z is a sinusoidal signal generated by a function
t

generator. Without the control loop, Fig. 6.10 shows the output of

the uncontrolled system. The large sinusoidal wave in the figure

results from the deterministic disturbance generated by the function

generator. Since the circuit is not accurately made, a small wave

with higher frequency is superimposed to the large wave in the

%I
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Figure 6.8 ExperimencAl .ierup t or Anal.og Test
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figure. This unforeseen nonlinearity is also a good source to test

he robustness of the control algorithms. The objective of the

control function is to compensate for the effect of the deterministic

disturbance and to get the minimum output.

- An M68000-based data acquisition and control system was devised

to test both control techniques on the electronic circuit. The

digital controller has a 12-bit analog to digital converter (ADC) and

a 12-bit digital to analog converter (DAC). In numerical

computation, each 16-bit data word is fixed-point formatted. The

higher byte represents the integer part of the data and the lower

byte stands for the fraction part of the data. The finite word-

length of the processor and the converters limit the maximum

amplitude of the control action. The maximum sampling speed of the

digital controller mainly depends on the number of parameters to be

estimated. About one millisecond is needed for the control with five

.. parameters.

i ly the output signal y is needed by the microprocessor

controller. The exact frequency and the amplitude of the disturbance

are unknown to the controller. However, the approximate range of the

* frequency is necessary in order to make sure that the sampling rate

of the controller is sufficiently high for avoiding the aliasing

problem. In this test, the frequency of the disturbance is about 10

Hz, and the sampling rate is 100 Hz.

By using the STC algorithm as shown in equations (6.13-15) with

n-2 and k-1, Fig. 6.11 shows that the variance of the output is

* -.. .-. ..

, . , • ~. . . . . . .. . .-...... ........ .. -. ,.. r w .. . . , . , . , . , . .' -.- - .'.-.- % '..,.."
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nearly eliminated, and the disturbance is countered by the discrete

control input having the same frequency. The output of the FCC

system, however, is only slightly improved as shown in Fig. 6.12.

The forecasting compensator, obviously, is much less effective than

the self-tuning controller. Again, from Fig. 6.12, the forecasting

compensator behaves like a unit feedback controller.
. "

6.4 Summary

In this chapter, we have theoretically shown that STC can

achieve the optimal control performance despite the unidentified

deterministic and stochastic disturbances. And, FCC, which works

like a unit feedback controller, is less effective than STC in

command tracking and disturbance rejection.

The digital simulation shows that the STC technique can not only

achieve the optimal response, but also stabilize the uncontrolled

machining system. The FCC technique, on the other hand, produces

less satisfactory output as found in the theoretical investigation.

And it has less capability of stabilizing the uncontrolled system.

The simulation also shows that the FCC system behaves as a random

walk process. Since the experimental machining properties are used

in the simulation, similar results may be expected in the control of

the real machining system.

In the analog test, the two control techniques are tested and

compared by an electronic circuit with a microprocessor controller.

The results show that STC is still more effective than FCC even with

the constraints of the finite word-length and sampling rate.

4..
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Figure 6.11 Outcput of STC Systema

Figure 6.12 Output of FCC Systemu
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

A new GAC system is proposed and formulated for improving the

geometrical accuracies of cylindrical machined parts. The

development is accomplished by tackling the three major problems in

GAC: measurement, modeling, and adaptive control.

In measurement, we use Whitehouse's multiprobe measurement to

solve the separation problem in in-process measurement of geometrical

error. New formulations are derived and analyzed for incorporating

the multiprobe measurement into the digital adaptive controller.

This is the first time that multiprobe measurement is used for

control purpose.

In modeling, the interaction of regenerative cutting dynamics

and structural dynamics is identified to be the most prominent

physics governing the dynamic behavior of cylindrical machining

processes. From this we derive a stochastic model in a discrete

form for the plunge cutting process. Both the stochastic and the

deterministic disturbances are incorporated in the model. This model

is, though linear, very usefull for designing a digital GAC system.
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In adaptive control, the self-tuning control theory is used to

generate an adaptive control algorithm for the model we derived.

Theoretical properties of the algorithm are analyzed to assess the

performance of the GAC system in practical application and to suggest

the ways for improvement. Also derived is a modified algorithm for

the GAC system with multiprobe measurement. A detuning factor is

introduced for stabilizing the GAC system with multiprobe

measurement.

Simulations are carried out to evaluate the performance of the

developed algorithms. The results show that the proposed GAC system

not only improves the accuracies considerably but also improves the

stability of the machining system by a factor of more than forty.

The GAC system with multiprobe has similar performance, except, as

the theoretical analysis predicted, that certain harmonic

disturbances may not be controllable for some specific space

configurations of the probes. This problem can be overcome by

changing the configuration slightly and selecting an appropriate

value for the detuning factor. The increase in stability through the

detuning factor is at the expense of geometrical accuracies normally.

The simulation also show- that the self-tuning control algorithms are

robust to nonlinearities and low model orders.

A comparison of STC and FCC shows that the strategies of

S. modeling and control we used can result in better performance than

other existing strategies. Also the comparison in the analog test

shows that the algorithm of STC does work well, as we have predicted,

- in a microprocessor based control system.

* : - -.-
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7.2 Recommendations

To enhance the applicability of this new GAC system, the

following subjects are recommended for future work:

(1) A cutting test will further substantiate this work. As we have

shown in Chapter 6 that the microprocessor controller is simple

A to implement, the major work will be the setting up of sensors

and actuators. For internal grinding or turning processes, the

accessibility of the sensors become more critical.

(2) In traverse cutting we need a reliable method for determining

the overlap factor before the operation of GAC. In-process

estimation of the overlap factor is not practical because it

4_ makes the estimation process nonlinear.

(3) The strategies of modeling and control can be modified and

applied to other machining processes, such as milling [102],

centerless grinding [13,85], EDM, ECM, and laser machining.

(4) Other sensors, such as force transducers and accelerometers can

be used in addition to the displacement sensor to help the

measurement problem and to ensure the optimal performance.

(5) The parameters estimated on-line can be used for monitoring the

conditions of the machining system during machining, such as

tool wear or breakage, defective spindle bearings, and other

malfunctions of the machine tool.
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Appendix 1

Derivation of (4.1)

The continuous transfer function of the tool-workpiece structure

can be represented by:

2

MT(s) kn 2~sw

n n

W a natural frequency of the structure
n

= damping ratio of the structure

k = stiffness of the structure
m

By taking the Z-transformation with a zero-order-hold [37], the

discrete transfer function is derived as follows:

• -1 MT(s)
MT-- (1 - z )Zf

-1 -2

I 8lz + a 2 z
""k -I -2 t

k. m 1 + a2Z + t2z

or more generally [23],

-1 -2
+ a z + a z

1 0 1 2
MT= -1 -2

m + az +a 2z

where

I.", •"',

****I.*~*4** Ilk.**~
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-aT -2aT
CL -2e cos bT, a 2 = e

I -aT co T-a e-aT snb

e8 2T 1-e c sin---e sinT cs
1 b

a ;w

n

and T is the unit sampling time interval.

The discrete form of the regenerative process in Chapter 2 is

-ST

I - lie
}

or

P lz-p

where the regenerative delay p is equal to T/T or 1/0~T). The

overlap factor is

The cutting process CP can be represented by the cutting stiffness,

i.e., CP - k . The stochastic and the deterministic disturbances of
c

Fig. 4.2 are given as

.7- 7-
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< 
-?2

W (1 + C'z +c 2 )""

Z =d + d t + Er sin (2Qrit + )
t 0 1 i i

respectively, where & is an uncorrelated random process with zero
t -

2
mean and variance a

The GAC system is, thus, governed by the following equations

Y = W + Z + Y (t) - X + u (A.d)
t t t s t t-k

-1 -2
k 0 + z + 02z

t k 0 -1 -2 (Yt -Yt-p) (A.2)
mI + az + a z1 2

By substituting (A.2) into (A.1) and using the following two

- -definitions

* =Y -Y(t)Y t Yt Ys (t

6 Y (t) - PY (t-p)

t S S

we can have the following equation

""* * -1 *..-2
; o +  z  + Sz ..

=w tz W ' 0 Cy miy + 6 +
t + Z +aZ -1 -2 t t-p t) +Ut-k

or

-1 -2
(1+ a1 z + a2 z ) - '3 t-p +6

..................................- '--~... ........ .. . ..'

2 . .. " -46 ..
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-1 -2
=(b -' + b I'z + b 2'z )(u t- Piyt + 6 )

+ (b 0 ' + b l'z -1+ b 2 'z -2(W t + z t (A.3)

where

a k /k 1 0,1,2
i c M,

ai (a. a I)C + 1o) i 1,2

0

bj a cz/0 + 8 o) i 0,1,2 and a

For the deterministic disturbance Z we can find such a polynomial
t

-1 -1 -1 -2
P(z )=(I z 11I (1 -2(cos 21Tiil)z + z ), .40

so that

P(z- )zt 0

Thus, multiplying (A.3) by P(z )gives the following model

A(z )(y - jy + 6 )=B(z )(u tk - i' + 6) + C(Z )

where

A(z ) A'(z )P(z =1+ a z +..a z-"
1 n

B(z ) B,(z )P(z ) b + b1 z + b.. z -n
0 1
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_-n

C(z ) = C'(z )B'(z )P(z - ) = I + c z + ... + cnz

and n is an appropriate positive integer which represents the model

. order. The polynomials of A, B and C may have common zeros on the

unit circle because of the periodic disturbances.

The model is linear only if overlap factor p is known

analytically or experimentally. A special case is the plunge cutting

process which has U I.

a 4 L

" 4

-', .

-'F
-- V . **J .. .. .. ..
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Appendix 2

STC With Weighted Minimum Variance Criterion

The control criterion of weighted minimum variance

2 2
Min Ety tk+ 6-u tI 6 > 0

gives the following control law for (4.1)

y + Bu =0, r =
t+kjt t 0

The self-tuning algorithm is thus (39J,

(i) choose appropriate

(ii) estimate the model parameters

e +e K c
t t-1 t t

P r zt2
Kt 2 T , 2 forgetting factor (<I)

t t-1 t

T 2
P (I-K z )P /A

t t t t-1

z = (y -y +6 ),(y -y + 6

t t-k t-p-k t-k t-k-1 t-p-k-1 t-k-1

(u t- yt- + 6 t),(u t-- tP1+ 6 t ,..1
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T

n(y - 6 n(y -6 ) J r =1+

1.2

Et (y t+ au )- - e -

(iii) u can be obtained from
t

T -

t+kt

Notice that when =0, the above algorithm becomes minimum variance

S TC.

4".
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Appendix 3

The FORTRAN Program for Digital Simulation

In this Appendix we give the FORTRAN program which is used for

the digital simulation in Chapters 5 and 6. The program is written

for the proposed GAC system with multiprobe measurement, (4.33-35).

By modifying the program so that the probe function

L-1

Pd(Z ) = 1

and the detuning factor

p= 1

the program can also be run for the GAC system without multiprobe

measurement, (4.11) and (4.12).

Subroutine SIML is the simulated plunge cutting process as

described in Chapter 5. The adaption mechanism is programmed

according to the minimum variance criterion as shown in Appendix 2.

Subroutine SQRTES is a recursive least squares routine with square

root factorization [411. Three types of the varying forgetting

factors are programmed in subroutine VFORG. The third type, which is

proposed by Fortescue et al. [361, needs

FL Z (Lonstant chosen for appropriate adaption speed)
...: 0

F2 I + zPtz
t t-1 t

F3=C
t

.- 7
I.'... ..
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PROGRAM PLGMLP( INPUT, OUTPUT, PLOT, TAPE5=I NPUT, TAPE6 -OUTPUT)
C *********************************

C ADAPTIVE ROUNDNESS CONTROL
C
C THIS IS A TECHNIQUE OF ADAPTIVE CONTROL WITH MULTIPROBE
C MEASUREMENT. IT HAS TWO MAJOR PARTS:
C 1. RECURSIVE PARAM EST
C 2. IMPLICIT MIN VAR CONTROL
C REF: ASTROM & WITTENMARK (1973)
C CLARKE (1981)
C WHITEHOUSECI976)
C PH.D. THESIS BY YHU-TIN LIN, AUG., 1985, PURDUE UNIV.
C GEN LIB: IMSL

C
COMMON RNS,FREQ,PHASE,AMPL,ALPH,BETA,GAMA,JF,JG
COMMON Y(IUOO),U(1000),E(1000),X(20),YS(1000),FEED,F(1000)
DIMENSION A(lO),B(1O),C(1O),YP(1000)
DIMENSION Z(20),THETA(20),THETB(20),S(120),ZYC2O),ZU(20),ZD(20)

C

READ 200,IP,IPRINT,IFEED,K,N,NA,NEEDPLT,NT

KI-K+l
L-N+K+l
LK=L+K
LKI-L+K+l
LNI-L+N+1
NI-N+I
NC-NA+ I
NK-N+K
N PA R-N+L+ N
NT0 -NT-I
NTK-NT+K
NTP-NT-IP*2

C
C SETUP OF MULTIPROBE CONFIG.
C

* READ 200,JF,JG
DPI-2.*3.1415926
ALPH-SINCDPI*(JG-JF)/IP) /SIN(DPI*JG/IP)
BETA-I.0
GAMA-SIN(DPI*JF/IP)/SIN(DPI*JG/IP)

C
C ***** SETUP OF SIMULATION CONDITIONS
C

READ 210, AMPL,FEED,PHASE,PSQR,RNS,STIFF
FREQ-2.*(2.*3.141592654/Ip)
READ 220,(A(J),J-1,NA),(B(J),J-1,NA),(C(J),J-1,NC)
PRINT 230,RNS,FREQ,AMPL,JF,JG,ALPH,BETA,GAMA
PRINT 240,NT,N,K,IP,NPAR,IFEED,FEED,STIFF,PSQR

--c z~<-
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C SELECT FORGETTING FACTOR AND DETUNING FACTOR
C
C JFORG=l FI-F2/I
C 2 F1*FORGETI-F2
C 3 FORTESCUE(1981)

READ 250,JFORG,FI,F2,F3,DTUNE
PRINT 270,JFORG, FL,F2, F3 ,DTUNE

C
C '~'*INITIALIZATION OF PLOT
C
C NEEDPLT-O NO PLOT
C 1 TWO POLAR PLOTS
C 2 ALL PLOTS
C 3 CONTROLLED POLAR & TIME SERIES (UNSTABLE SYSTEM)

*C 4 ONLY TIME SERIES
C

IF CNEEDPLT.EQ.O) GO TO 30
CALL PLOTS
CALL FACTOR(.4)
SFPOLA-40.
XC-O.
YO-12. 5
Y XL-4.
CALL PLOT(12.5,O.,3)
CALL PLOT(12.5,16.,3)
IF CNEEDPLT.EQ.1) GO TO 30

C
SFPARA-I.
SFTIME- 15.

* ., XINI-0.
XLEN1'01.
YINI-4.*2
YLEN-2.
THE RO-2.
THMIN--T HERO/ SFPARA
CALL LABEL(NT,XINI,XLEN,YINI,YLEN,THMIN)
DT=-XLEN/NT
T-XINI
TO-XINI
UZERO-YINI$-.
YZERO-YINI+3.
YZERU-YINI+5.
DO 20 J-1,NPAR,

20 THETB(J) -0.
C
C *** TEST UNCONTROLLED SYSTEM
C IFEED - 0, NO RETRACTION; -1, WITH RETRACTION
C

30 CONTINUE
DO 40 J-1,NA
B(J)-B(J) *STIFF

la40 X(J)uO.
YSO-O.
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DO 50 I=1,NTK
YSO=)FEED*I
IF (I.GT.NTP) YS(I)=YS(NTP)
I AP-I-I P
IF (IAP.LE.O) GO TO 50
IF (IFEED.EQ.O) YSO-YS(IAP)
IF (IFEED.EQ.O) YSO=FEE!1"IAP

50 F(I)-YS(I)-YSO
I CTL-O
CALL SIML(A,B,C,NT,NA,IP,ICTL)
IL-NT
Do 60 I-1,NT
F( IL)-PROBE(F,IL)
IU- IL-I

60 YP(I)-Y(I)-YS(I)
NTR-NT-IP
IF (NEEDPLT.NE.1.AND.NEEDPLT.NE.2) GO TO 65
NTR-NT-IP
XC-XC+2.5
IFCON-0

* CALL RONDPLT(YP,XC,YC,YXL,NTR,IP,RNS,IFCON,SFPOLA)
65 IF (NEEDPLT.LE.1) GO TO 70

CALL SPLOT(YP,NT,YZERU,TO,DT,SFTIME)

CALL PLOT(XINI,THERO,3)
C
C ***INITIALIZATION FOR PARAM EST

70 PRINT 280
ICTL-1

C------------------------------------------------------------
READ 220,(THETA(J) ,J-1,NPAR)
THETA(Nl)-1.
DO 80 J-1,NA

80 X(J)0O.
DO 90 I-2,LKI

90 CALL SIML(A,B,C,I,NA,IP,ICTL)
CALL INIT(YP,ZY,ZU,ZD,S,N,K,IP,PSQR)

C
C *****~' RECURSIVE EST BY SQUARE ROOT METHOD W. FORGET FACTOR
c

ZDK-ZU( i)-PROBE(U ,LK)
Do 110 I-LKI,NTO
CALL VFORG( FORGET,JFORG, I, Fl, F2, F3)
I Y- I-K
YP( I)Y(IY)-YS(IY)
CALL MOVE(ZY,KI,Z,1,N)
CAL.VEZ,4,,1L

CALL MOVE(ZU,KI,Z,NI,)

ZZ-ZDK
IF (K.NE.0) ZZ--ZD(K)
PHI-PROBE(YP,I)+ZZ
CALL SQRTES(PHI,Z,S,THETANPAR,ERR,FORGET)

C ***** DATA UPDATE & CONTROL
CALL UPDAT(ZY,PHI,NK)

!..7, n
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CALL UPDAT(ZU,O.,LK)
.5 CALL UPDAT(ZD,-ZDK,NK)

S UM-S CAPRD(ZY, THETA, I,I, N)+SCAPRD(ZU, THETA,I, N1, L)+
&SCAPRD(ZD,THETA,1,LNI,N)

IKI-II-K
IKP-IKI-IP
ZDK-F(IKI)
IF (IKP.GT.O) ZDK-ZDK-PROBE(YP,IKP)
ZU(i1)-(ZDK-SUM) /THETA(NI)
UC I)-(ZU(1)-ZDK-PROBE(U,I) )/ALPH*DTUNE
ZU(i)-PROBE(U,I)+ZDK

C------------------------------------------------
IYO-IY-1
IF (I.GT.IPRINT) PRINT 260,YPCI),U(IYO),ERR,(THETA(J),J-1,NPAR)
IF (NEEDPLT.LE.1) GO TO 100
CALL CPLOT(THETA,THETB,NPAR,T,DT,THERO,SFPARA)

C *** COMPUTE SYSTEM OUTPUT
* 100 CALL SIML(A,B,C,I1,NA,IP,ICTL)

110 CONTINUE

C ***** PLOT CONTROL INPUT & OUTPUT
C

DO 120 I=NT,NTK
IY-I-K
I YO-I Y- 1
YP( I)-Y( IY)-YS(IY)

120 PRINT 260,YP(I),U(IYO)
IF (NEEDPLT.EQ.O.OR.NEEDPLT.EQ.4) GO TO 130
NTKP-NTK-I P
XC=XC+5.
IFCON-1
CALL RONDPLTCYP,XC,YC,YXL,NTKP,IP,RNS,IFCON,SFPOLA)

130 IF (NEEDPLT.LE.1) GO TO 150
C

DO 140 I-1,NT
IK-I+K

140 YP( i)-YP( [K)
CALL SPLOT(YP,NT,YZERO,TO,DT,SFTIME)
CALL SPLOTCU,NT,UZERO,TO,DT,SFTIME)

150 CONTINUE
CALL PLOT(O. ,O. ,999)
STOP

200 FORMAT( 1015)
210 FORMAT(8F10.0)
220 FORMAT(5F10.O)
230 FORMAT(X,RNS--,F5.4,- FREQ--,F1O.8,- AMPL=-,F5.4,- JF--,

& 12,- JG--,12,- ALPH--,FIO.6,- BETA--,FIO.6,- GAMA--,FIO.6)
240 FORMAT(1X-NT--,I4,- N-',12,' K-',12,' IP-',I2,' NPAR~ ',12, .

& - IFEED--,I2,- FEED--,F5.4,- STIFF--,F5.2,- PSQR--,F5.1)
250 FORMAT(15,4FI0.O)
260 FORMAT(IX,16F8.5) f

270 FORMAT(IX,'TYPE OF FORGET:,I2,o Fl-',F8.5,o F2-',F8.5$' F3=',
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& F8.5,' DETUNE-',F8.5)
280 FORMAT( iX, 80(-)/7X, Y, 6X,U,4X, ERR- ,2X,THETA--)

E ND
SUBROUTINE INIT(YP,ZY,ZU,ZD,S,N,K,IP,PSQR)

C ********************************

C INITIALIZATION OF VARIABLES
C ********************************

C
* ~- COMMON RNS,FREQ, PHASEAMPLALPH, BETAGAMA,JF ,J

COMMON Y(1000),U(1000),E(1000),X(20),YS(1000),FEED,FCIOOO)
DIMENSION YP(1000),ZK(20),ZY(20),ZU(20),ZD(20),S(120)
L-N+K+l
NK-N+K
KI=K+l
LK-L+K
DO 2210 I-1,LK
YP( I)-O.

* 1K-I-K
* 2210 IF (IK.GT.0) YP(I)-Y(IK)-FEE2F*IK

C
LKK1=LK+K+1
DO 2220 J-1,LK
LKP-LKKI-IP
ZK(J)=F(LKKI)
IF (LKP.GT.O) ZK(J)-ZK(J)-PROBE(YP,LKP)

2220 LKKI-LKKI-I
C
C INIT Z(.) & X(.)
C

JY-LK
DO 2230 J=1,NK
JIJ-KI+J
ZY(J)-PROBE(YP,JY)+ZK(JU)

2230 JY-JY-1
C

DO 2240 J=1,LK
ZU(J)-PROBE(U,JU)+ZK(J)

2240 JU=JU-1
C

DO 2245 J=1,NK
J1-J+I

2245 ZD(J)--ZK(JI)
C
C ** INIT S(.)TRANSPOSE- UPPER TRIANGLE, IN ROW-WISE

'p...C

NPAR-N+L+N
Ji- I-
DO 2250 J=1,NPAR
DO 2250 I-J,NPAR
S(JI)r )
IF (I.EQ.J) S(JI)-PSQR

2250 JI-JI+l
RETURN
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END
SUBROUTINE SIML(A,B,C,IT,N,IP,ICTL)

C
C SIMULATED PLUNGE CUTTING PROCESS
C ICTL-O (UNCONTROL)
C ICTL-1 (CONTROL)
C
C

COM4MON RNS,FREQ,PHASE,AMPL,ALPH,BETA,GAMA,JF,JG
COMMON Y(1000),U(1000),E(1000),X(20),YS(1000),FEED
DIMENSION A(20),B(20),C(20)
11=1 T
12-IT
N 1-N+ I
IF (ICTL.NE.O) GO TO 2120
11-2
SEED-1 2347. DO
CALL GGNML(SEED,IT,E)
RU-.001
SEED..127.DO
CALL GGNML(SEED,IT,U)
DO 2110 I=1,IT
U( I)=U(I) *RU
IF (I.GT.NI) U(I)=O.

2110 E(I)-E(I)*RNS
Y(l)-E(1)+YS(1)+AMPL*SIN(FREQ-PHASE)

C
2120 CONTINUE

DO 2150 1=11,12
EI-ECI)
INI-I-NI
IF (INI.GT.O) EI=EI+C(Nl)*E(IN1)
X(Nl)=O.
DO 2140 J-1,N

IF (IJ.LE.O) GO TO 2130
EI=El+C(J)*E(IJ)
Y1-Y(iJ)

.r:. JP1J1-P
IF (IJP.GT.O) YI-YI-Y(IJP)
X(Nl)=X(Nl)+B(J)*Yl

2130 JN-NI-J
X(Nl)-X(NI)-A(JN)*X(J)

Y(t)=EI-X(Nl)+YS(I)+AMPL*SIN(FREQ*I+PHASE)

10-1-1
Y( !)-Y(I)+U(IO)
IBFul-IP
IF (IBP.LE.0) GO TO 2150
YB-Y(I)-Y( ISP)
IF (YB.LT.O.) YB-O.
Y( 1)-YB+Y( IBP)

4i'
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2150 CONTINUE
RETURN
END
SUBROUTINE VFORG(FORGET,JFORG,I,FI ,F2,F3)

C
C COMPUTE TIME VARYING FORGET
C
C

IF (JFORG.EQ.1) FORGET-FI-F2/I
IF CJFORG.EQ.2) FORGETNFl*FORGET+F2
IF (JFORG.NE.3) RETURN

FORGET-1.-F3*F3/(F1*F2)
RETURN

.y. END
SUBROUTINE SQRTES(PHI,Z,S,THETA,N,E,FORGET)

C********************************

C RECURSIVE PARAM ESTIMATION OF SISO SYSTEM
C BY SQUARE ROOT METHOD
C REF: CLARKE (1981)
C

* ~~~~C********************************
C

DIMENSION S(120),ZC20),GK(20),G(2L)),THETA(20)
-V C

C CAL PRED ERROR
C

* E-PHI-SCAPRD(Z ,THETA, , 1, N)
C
C CAL SCALAR DIVISOR-S ICSQ AND KALMAN GAIN
C

S IGSQ'=FORGET* FORGET
K-N
JI-1
DO 3090 J-1,N

3090 GK(J)-O.O
C

DO 3100 J-1,N
FJ-SCAPRD( S, Z,J I,J, K)
K-K-I
S IGSQ-S IGSQ+FJ*FJ
DO 3100 I-J,N
GK( I)-GK( I)+FJ*S(JI)

- .3100 JI-JI+1

C
C

S IG-SQRT( SIGSQ)
DO 3110 I-1,N

3110 GCI)-GK(I) /SIG
C
C RECURSIVE ALGORITHM ON S(.)
C

K-1l
DO 3130 J-I,N

2.4 k.
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A-SQRT(SCK)*S(K)-GCJ)*GCJ))
U-S(K)/A
V--G(J)/A
5(K) -A/FORGET
IF(J.EQ.N)GO TO 3130
KI-K+1
J1-J+1
DO 3120 I=JI,N
B-S(KI)
S(KI)-(U*S(KI)+V*G( I) )/FORGET
G(I)=U*G(I)+V*B

3120 KI-KI-si
K-K I

A3130 CONTINUE
C
C CAL NEW PARAMETERS
C

A-E/SIGSQ
00 3140 I-1,N

3140 THETAC 1)-THETAC I)+CK( I)*A
RETURN
END
FUNCTION SCAPRD(AI,A2,I1,12,L)

C ~r
*C CAL. SCALAR PRODUCT OF TWO COLUMN MATRICES

C
C

DIMENSION AI(100),A2(100)
SCAPRD-O.0
i-Il
J 2-12
DO 2410 1-1,L

* SCAPRD-SCAPRD.AI(JI)*A2(J2)
J 1-31+1

2410 J2-J2+1
RETURN
END
SUBROUTINE MOVE(A,IA,B,IB,LEN)

C MOVE ATO B
C
C

DIMENSION A(50),B(50) 4

JA-IA
3 B- lB
DO 2510 1-1,LEN
B (3B) -A (JA)
JA'JA+1

2510 JB-JB+1
RETURN

END

SUBROUTINE UPDAT(Z,Y,NPAR)

97 2
CLL.
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C SHIFT I/O DATA (FIFO)
C *******************************

C
DIMENSION Z(20)
J-NPAR
DO 2310 I=2,NPAR
JI-J-1
z(J)='z(J1)

2310 J-JI
Z( I)=Y
RETURN
END
FUNCTION PROBE(Y,I)

C********************************

C FILTERED OUTPUT OF THREE PROBES
C *******************************

C
COMMON RNS, FREQ, PHASE, AMPL, A,B, C,JF,JG
DIMENSION Y(1000)
I JF-I-JF
I JOmI-JO
PROBE-Y( I) *A
IF (IJF.GT.O) PROBE-PROBE+Y(IJF)*B
IF (IJG.GT.O) PROBE-PROBE+Y(IJG)*C
RETURN
END
SUBROUTINE ACCUR(Y,I,N,DIMERR,OUTRND,FINISH)

C *********************************

C EVAL. ACCURACY OF MACHINED PART
C

C DIMENSION Y(1000)

SUM-O.

SUMSQ-0.
YMAX-O.
YMIN-O.

K 2-I +N
DO 2520 K=KI,K2
IF (Y(K).CT.YMAX) YMAX-Y(K)
IF (YCK) .LT.YMIN) YMINOY(K)
S UM-S UM+Y (K)

2520 SUMSQ-SUMSQ+Y(K)*YCK)
DIMERR-SUM/N
FINISH-SQRT( SUMSQ/N-DIMERR*DIMERR)
OUTRND-YMAX-YMIN
PRINT *,-OUTRND ,OUTRND,- FINISH-,FINISH,( DIMERR-,DIMERR.
RETURN
END
SUBROUTINE CPLOT(THETA,THETB,NPAR,T,DT,OFFSET,SF',

C********************************

C PLOT OF PARAMETERS
C ~ ~~***********************
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C
A DIMENSION THETA(20),THETB(20)

TI =T
T-T+DT

* - THETB( 1) =THETA( I)
DO 4110 J=I,NPAR
CALL PLOT(T,OFFSET+THETA(J)*SF,2)
J I-J+I
IF(JI.LE.N'PAR) GO TO 4100
il-I
TI-T

4100 CALL PLOT(TI,OFFSET+THETB(J1)*SF,3)
4110 T HETB(J1) =T HETA(JI1)

RETURN
END
SUBROUTINE SPLOT(Y,NT,ZERO,TO,DT,SF)

C *******************************

C PLOT OF SINGLE TIME SERIES

C

DIMENSION Y(2000)
CALL PLOT(TO, ZERO,3)
T-TO
DO 4115 I=1,NT
T-T+DT
YCI)=Y(I)*SF
IF(ARS(Y(I)).GT.1.O)Y(I)=SIGN(1. ,Y(I))

4115 CALL PLOT(T,Y(I)+ZERO,2)
RETURN
END
SUBROUTINE RONDPLT(Y,XC,YC,YXL,I,N,RNS,IFCON,SF)

C*******************************
C POLAR PLOT OF FORM GEOM. AND EVAL. OUT-OF-ROUNDNESS
C*******************************

C
D DIMENS ION Y( 1000)
CALL AXISX(XC,YC-YXL/2, ,1,YXL,90.,O.,.1,.1,31)
CALL AXISX(XC-YXL/2,YC,' -,,YXL,0.O,O.,.1,.1,31)
R-1.5

-J DANG2.*3.14 15926/N
CALL PLOT(XC,YC,-3)
CALL CIRCLE(R,DANG,N)

* CAL.L NEWPEN(2)
C

A-Y( I)*SF+R
- - CALL PLOT(A,O.,3)

12-I+N-1
DO 3500 K-I1,12
R1ImR+Y(K)*SF
ANGODANG*(K-I)
X1=RI*COS(ANG)

Y1l.R1*SIN(ANG)
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3500 CALL PLOT(XI,YI,2)
CALL PL0T(A,0.,2)
CALL NEWPEN(1)
CALL ACCUR(Y, I,N,DIMERR,OUTRND, FINISH)
HIGH=.2
XS--2.

IF IFONEQ.0) CALL SYMBOL(XS,YSN,HIGH,- (UNCONTROLLED)-,0.,17)

IF (IFCON.EQ.I) CALL SYMBOL(XS,YSN,HIGH,- (CONTR0LLED)-,0.,17)
Y SN-YSN-H IGH*1. 5
CALL SYMBOL(XS,YSN,HIGH,-DIMENS ERROR:',O.,12)
CALL NUMBER(XN,YSN,HIGH,DIMERR,O.,5)
YSN-YSN-HIGH*1 .5
CALL SYMBOL(XS,YSN,HIGH, -OUT-OF-ROUND: -,O. ,12)
CALL NUMBER(XN,YSN,HIGH,OUTRND,O. ,5)
IF (RNS.EQ.O) GO TO 3550
YSN-YSN-HIGH*I .5
CALL SYMBOL(XS,YSN,HIGH,-FINISH (RMS):',O.,12)
CALL NUMBER(XN,YSN,HIGH,FINISH,O. ,5)

3550 CALL PLOT(O.,O.,3)
CALL PLOT(-XC,-YC,-3)
RETURN
END
SUBROUTINE CIRCLE(R,DANG,N)
CALL PLOT(R,O. ,3)
DO 3600 I=1,N
ANO..DANO~ I
X-R*25( ANG)
Y-R*S IN( ANG)

3600 CALL PLOT(X,Y,2)
RETURN
END
SUBROUTINE LABEL(NT,XI0,XLO,YIO,YLO,THMIN)

C *******************************

C PLOT OF LABELING AND COORDINATE FRAME
C
C

DX-NT/XLO

XL-XLo
YI-YIO
YL-Y LO
Y=YI
CALL AXIS(XI,YlV -,-1,XL,O.,O.,DX,20)
DO 4220 J-1,3
CALL AXIS(XL,Y- -,1,YL,90.,O.,1.,16)

* CALL AXIS(XI,Y,- ,-1,YL,90.,O.,1.,16)
DO 4220 K-1,2
y-Y+1.
CALL PLOT(XI,Y,3)
CALL PLOT(XL,Y,2)

4220 CONTINUE

12fLA
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Y I-0.
YL-4.
DY-T HMI N*2. /YL
CALL PLOT(XI,YL,3) -

CALL PLOT(XL,YL,2)
CALL AXIS(XI,YI,- ,-1,XL,0.,0.,DX,4)
CALL AXIS(XL,YI- -,1,YL,90.,0.,1.,16)
CALL AXIS(XI,YI,-THETA-,5,YL,90.,THMIN,DY,7)
XS-.50
YS-Y-.4
XN--.3
YN-Y-1.
HIGH- .2
CALL SYMBOL(XS,YS,HIGH,-UNCONTROL RESPONSE ,0. ,18)
CALL NUMBER(XN,YN,HIGH,0.,0.,0)
YS-YS-2.
YN-YN-2.
CALL SYMBOL(XS,YS,HIGH,-CONTROL RESPONSE-,O. ,16)

* CALL NUMBER(XN,YN,HIGH,0.,0. ,0)
Y S-Y S-3.
YNY N- 2.
CALL SYMBOL(XS,YS,HIGH,-CONTROL INPUT-,0. ,13)
CALL NUMBER(XN,YN,HIGH,0. ,0. ,0)
RETURN
E ND

#EOR
60 880 0 0 2 2 0 900
5 20

.004 .004 0 50. .002 .1
-1.602708 .94176453 .17093188 .16812465 2.0
1.31 .28 0. 0.

1 .995 .5 0 .98
#EOR
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